Cho n thuộc N* và a^n chia hết cho 5 . Chứng tỏ a^2 +2025 chia hết cho 25
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
4 tháng 8 2017
Với a ko chia hết cho 3,=>a^2 chia 3 dư 1(dễ chứng minh)
Mà 4 chia 3 cx dư 1
=>4*a^2 chia 3 dư 1
Mà 3a chia hết cho 3(vì 3 chia hết cho 3) và 5 chia 3 dư 2
=>4a^2+3a+5 chia hết cho 3
Vậy......
23 tháng 12 2015
A=n(n+1)+1
n(n+1) luôn chia hết cho 2
n(n+1) không chia hết cho với n khác 5
Do đó A ko chia hết cho 2 và 5
22 tháng 10 2015
Ta có : an chia hết cho 5 nên a chia hết cho 5
=> a2 chia hết cho 5
Do a2 chia hết cho 5 và 150 cũng chia hết cho 5
nên a2+150 chia hết cho 5
Vậy a2+150 chia hết cho 5
tick nha
Đặt a/b=c/d = t
=> a =bt; c=dt
Thay vào VT ta có :
$\frac{7a^2+3ab}{11a^2-8b^2}=\frac{7.b^2t^2+3bt.b}{11b^2t^2-8b^2}==\frac{b^2t\left(7t-3\right)}{b^2\left(11t^2-8\right)}=\frac{t\left(7t-3\right)}{11t^2-8}$7a2+3ab11a2−8b2 =7.b2t2+3bt.b11b2t2−8b2 ==b2t(7t−3)b2(11t2−8) =t(7t−3)11t2−8
Tương tựu thay vào VP
olm duyệt đi