Giải pt (Tìm đkxđ)
a, \(\sqrt{2x^2+4x+1}\) = \(1-x^2-2x\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
ĐKXĐ: $3-2x\geq 0\Leftrightarrow x\leq \frac{3}{2}$
Bài 2:
a. ĐKXĐ: $x\geq \frac{1}{3}$
PT $\Leftrightarrow 3x-1=2^2=4$
$\Leftrightarrow x=\frac{5}{3}$ (tm)
b. ĐKXĐ: $x\geq 2$
PT $\Leftrightarrow \sqrt{x-2}+2\sqrt{x-2}=6$
$\Leftrightarrow 3\sqrt{x-2}=6$
$\Leftrightarrow \sqrt{x-2}=2$
$\Leftrightarrow x-2=4$
$\Leftrightarrow x=6$ (tm)
\(ĐKXD:\left\{{}\begin{matrix}2x^2+5x-3\ge0\\2x-1\ge0\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}2x^2+6x-x-3\ge0\\2x\ge1\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}2x\left(x+3\right)-\left(x+3\right)\ge0\\x\ge\dfrac{1}{2}\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}\left(x+3\right)\left(2x-1\right)\ge0\\x\ge\dfrac{1}{2}\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}\left[{}\begin{matrix}\left\{{}\begin{matrix}x+3\ge0\\2x-1\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x+3\le0\\2x-1\le0\end{matrix}\right.\end{matrix}\right.\\x\ge\dfrac{1}{2}\end{matrix}\right.\)
\(< =>\left\{{}\begin{matrix}\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge-3\\x\ge\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x\le-3\\x\le\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\\x\ge\dfrac{1}{2}\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge\dfrac{1}{2}\\x\le-3\end{matrix}\right.\\x\ge\dfrac{1}{2}\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}x\le-3\\x\ge\dfrac{1}{2}\end{matrix}\right.\)
Câu 1:
a: x+2=0
nên x=-2
b: (x-3)(2x+8)=0
=>x-3=0 hoặc 2x+8=0
=>x=3 hoặc x=-4
a .
x + 2 = 0
=> x = 0 - 2 = -2
b ) .
<=> x - 3 = 0 ; 2x + 8 = 0
= > x = 3 ; x = -8/2 = -4
c ) .
ĐKXĐ của pt : x - 5 khác 0 = > ddk : x khác 5
Do vế trái dương nên pt chỉ có nghiệm khi \(x\ge\dfrac{3}{4}\), kết hợp điều kiện \(2x^4-3x^2+1\ge0\Rightarrow x\ge1\)
Khi đó:
\(4x-3=\sqrt{2x^4-3x^2+1}+\sqrt{2x^4-x^2}\ge\sqrt{2x^4-3x^2+1+2x^4-x^2}\)
\(\Rightarrow4x-3\ge\sqrt{4x^4-4x^2+1}\)
\(\Rightarrow4x-3\ge\left|2x^2-1\right|=2x^2-1\)
\(\Rightarrow2x^2-4x+2\le0\)
\(\Rightarrow2\left(x-1\right)^2\le0\)
\(\Rightarrow x=1\)
đk: \(1-x^2-2x\ge0\Leftrightarrow-1+\sqrt{2}\ge x\ge-1-\sqrt{2}\)
và \(2x^2+4x+1\ge0\Rightarrow\frac{-2+\sqrt{2}}{2}\ge x\ge\frac{-2-\sqrt{2}}{2}\)
Kết hợp lại được: \(\frac{-2+\sqrt{2}}{2}\ge x\ge\frac{-2-\sqrt{2}}{2}\)
Ta có: \(\sqrt{2x^2+4x+1}=1-x^2-2x\)
\(\Leftrightarrow\left(\sqrt{2x^2+4x+1}-1\right)+\left(x^2+2x\right)=0\)
\(\Leftrightarrow\frac{2x^2+4x+1-1}{\sqrt{2x^2+4x+1}+1}+x\left(x+2\right)=0\)
\(\Leftrightarrow\frac{2x\left(x+2\right)}{\sqrt{2x^2+4x+1}+1}+x\left(x+2\right)=0\)
\(\Leftrightarrow x\left(x+2\right)\left(\frac{2}{\sqrt{2x^2+4x+1}+1}+1\right)=0\)
Vì \(\frac{2}{\sqrt{2x^2+4x+1}+1}+1\ge2+1=3\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\left(tm\right)\\x=-2\left(ktm\right)\end{cases}}\)
Vậy x = 0