cho A=x^2+1/x-1 tìm x để A>-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có :
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\Rightarrow\frac{(a+b)}{ab}\ge\frac{4}{(a+b)}\)
\(\Rightarrow(a+b)^2\ge4ab\)
\(\Rightarrow(a-b)^2\ge0(đpcm)\)
Mình để cho dấu lớn bằng để dễ hiểu nha bạn
c,Ta có : \(x^2-4x+5=(x^2-4x+4)+1=(x-2)^2+1\ge1\)
Dấu " = "xảy ra khi : \((x-2)^2=0\Rightarrow x=x-2=0\Rightarrow x=2\)
Rồi bạn tự suy ra.Mk chắc đúng không nữa nên bạn thông cảm
Còn câu b và d bạn tự làm nhé
Chúc bạn học tốt
\(a,\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\frac{a+b}{ab}-\frac{4}{a+b}\ge0\)
\(\Leftrightarrow\frac{a^2+2ab+b^2-4ab}{ab\left(a+b\right)}\ge0\)
\(\Leftrightarrow\frac{a^2-2ab+b^2}{ab\left(a+b\right)}\ge0\Leftrightarrow\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\)(luôn đúng vì a>0,b>0)
dấu ''='' xảy ra khi và chỉ khi a=b
\(b,x+\frac{1}{x}\ge2\)
\(\Leftrightarrow x-2+\frac{1}{x}\ge0\)
\(\Leftrightarrow\frac{x^2-2x+1}{x}\ge0\Leftrightarrow\frac{\left(x-1\right)^2}{x}\ge0\)(luôn đúng)
dấu''='' xảy ra khi và chỉ khi x=1
áp dụng\(x+\frac{1}{x}\ge2\)(c/m trên) =>GTNN là 2
dấu ''='' xay ra khi và chỉ khi x=1
\(c,\Leftrightarrow\left(x-2\right)^2+1\ge1\)
=> GTNN là 1 tại x=2
\(d,\frac{-\left(x^2+4x+4+6\right)}{x^2+2018}=\frac{-\left(x+2\right)-6}{x^2+2018}< 0\)
vì -(x+2 )-6 <-6
Bài 1 :
a) \(ĐKXĐ:x\ne1\)
\(A=\left(\frac{3}{x^2-1}+\frac{1}{x+1}\right):\frac{1}{x+1}\)
\(\Leftrightarrow A=\frac{3+x-1}{\left(x-1\right)\left(x+1\right)}\cdot\left(x+1\right)\)
\(\Leftrightarrow A=\frac{x+2}{x-1}\)
b) Thay x = \(\frac{2}{5}\)vào A ta được :
\(A=\frac{\frac{2}{5}+2}{\frac{2}{5}-1}=\frac{\frac{12}{5}}{-\frac{3}{5}}=-4\)
c) Để \(A=\frac{5}{4}\)
\(\Leftrightarrow\frac{x+2}{x-1}=\frac{5}{4}\)
\(\Leftrightarrow4x+8=5x-5\)
\(\Leftrightarrow x=13\)
d) Để \(A>\frac{1}{2}\)
\(\Leftrightarrow\frac{x+2}{x-1}>\frac{1}{2}\)
\(\Leftrightarrow\frac{x+2}{x-1}-\frac{1}{2}>0\)
\(\Leftrightarrow2x+4-x+1>0\)
\(\Leftrightarrow x+5>0\)
\(\Leftrightarrow x>-5\)
Bài 2 :
a) \(ĐKXĐ:\hept{\begin{cases}x\ne-1\\x\ne0\end{cases}}\)
\(A=\frac{x^2}{x^2+x}-\frac{1-x}{x+1}\)
\(A=\frac{x}{x+1}+\frac{x-1}{x+1}\)
\(\Leftrightarrow A=\frac{2x-1}{x+1}\)
b) Để \(A=1\)
\(\Leftrightarrow\frac{2x-1}{x+1}=1\)
\(\Leftrightarrow2x-1=x+1\)
\(\Leftrightarrow x=2\)
b) Để \(A< 2\)
\(\Leftrightarrow\frac{2x-1}{x+1}< 2\)
\(\Leftrightarrow\frac{2x-1}{x+1}-2< 0\)
\(\Leftrightarrow2x-1-2x-1< 0\)
\(\Leftrightarrow-2< 0\)(luôn đúng)
Vậy A < 2 <=> mọi x
a) Đk: x#2 (*)
Với (*), A=(x - 2 + 5)/(x - 2)= 1 + 5/(x - 2)
A nguyên <=> x-2 thuộc Ư(5)={-5;-1;1;5}
=> S={-3;1;3;7}
b) Đk: x#-3
Với (*), A= (- 2x - 6 + 7)/(x + 3) = -2 + 7/(x+3)
A nguyên <=> x + 3 thuộc Ư(7)={1;-1;7;-7}
=> S = {-2;- 4;4;-10}
\(A=\left(\frac{1}{1-x}-1\right):\left(x+1-\frac{1-2x}{1-x}\right)\) \(\left(ĐK:x\ne1;x\ne2\right)\)
\(=\frac{1-1+x}{1-x}:\frac{\left(1-x\right)\left(x+1\right)-\left(1-2x\right)}{1-x}\)
\(=\frac{x}{1-x}\cdot\frac{1-x}{1-x^2-1+2x}\)
\(=\frac{x}{-x^2+2x}\)
\(=\frac{x}{-x\left(x-2\right)}=-\frac{1}{x-2}=\frac{1}{2-x}\)
b) Để A=\(\frac{1}{2}\) \(\Leftrightarrow\)\(\frac{1}{2-x}=\frac{1}{2}\)
\(\Leftrightarrow2-x=2\)
\(\Leftrightarrow-x=0\Leftrightarrow x=0\)
c) Để A>1 \(\Leftrightarrow\)\(\frac{1}{2-x}>1\)
\(\Leftrightarrow\)\(\frac{1}{2-x}-1>0\)
\(\Leftrightarrow\)\(\frac{1-2+x}{2-x}>0\)
\(\Leftrightarrow\)\(\frac{x-1}{2-x}>0\)
\(\Leftrightarrow\begin{cases}x-1>0\\2-x>0\end{cases}\) hoặc \(\begin{cases}x-1< 0\\2-x< 0\end{cases}\)
\(\Leftrightarrow\begin{cases}x>1\\x< 2\end{cases}\) hoặc \(\begin{cases}x< 1\\x>2\end{cases}\)(vô nghiệm)
\(\Leftrightarrow1< x< 2\)
Vậy \(1< x< 2\) thì A<1
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
a) Đk: x#2 (*)
Với (*), A=(x - 2 + 5)/(x - 2)= 1 + 5/(x - 2)
A nguyên <=> x-2 thuộc Ư(5)={-5;-1;1;5}
=> S={-3;1;3;7}
b) Đk: x#-3
Với (*), A= (- 2x - 6 + 7)/(x + 3) = -2 + 7/(x+3)
A nguyên <=> x + 3 thuộc Ư(7)={1;-1;7;-7}
=> S = {-2;- 4;4;-10}
1a) \(\frac{x}{5}\) = \(\frac{5}{x}\)
Vì\(\frac{x}{5}\) = \(\frac{5}{x}\) nên x. x= 5. 5
x\(^2\) = 25
x\(^2\) = 5\(^2\)
-> x\(^2\) = 5\(^2\) hoặc x= -5\(^2\)
=> x= 5 hoặc x= -5
Chúc bn học tốt!
Để A > -1 thì \(\frac{x^2+1}{x-1}>-1\)
<=> \(\frac{x^2+1}{x-1}+1>0\)
<=> \(\frac{x^2+1}{x-1}+\frac{x-1}{x-1}>0\)
<=> \(\frac{x^2+x}{x-1}>0\)
Xét hai trường hợp \(\hept{\begin{cases}x^2+x>0\\x-1>0\end{cases}}\)và \(\hept{\begin{cases}x^2+x< 0\\x-1< 0\end{cases}}\)( bạn tự làm tiếp )