a (1-x)(x+1) = / Y+1/
b 2x + 3 không chia hết 3x -1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:a) Ta có: \(1-3x⋮x-2\)
\(\Leftrightarrow-3x+1⋮x-2\)
\(\Leftrightarrow-3x+6-5⋮x-2\)
mà \(-3x+6⋮x-2\)
nên \(-5⋮x-2\)
\(\Leftrightarrow x-2\inƯ\left(-5\right)\)
\(\Leftrightarrow x-2\in\left\{1;-1;5;-5\right\}\)
hay \(x\in\left\{3;1;7;-3\right\}\)
Vậy: \(x\in\left\{3;1;7;-3\right\}\)
b) Ta có: \(3x+2⋮2x+1\)
\(\Leftrightarrow2\left(3x+2\right)⋮2x+1\)
\(\Leftrightarrow6x+4⋮2x+1\)
\(\Leftrightarrow6x+3+1⋮2x+1\)
mà \(6x+3⋮2x+1\)
nên \(1⋮2x+1\)
\(\Leftrightarrow2x+1\inƯ\left(1\right)\)
\(\Leftrightarrow2x+1\in\left\{1;-1\right\}\)
\(\Leftrightarrow2x\in\left\{0;-2\right\}\)
hay \(x\in\left\{0;-1\right\}\)
Vậy: \(x\in\left\{0;-1\right\}\)
Bài 1 :
a, Có : \(1-3x⋮x-2\)
\(\Rightarrow-3x+6-5⋮x-2\)
\(\Rightarrow-3\left(x-2\right)-5⋮x-2\)
- Thấy -3 ( x - 2 ) chia hết cho x - 2
\(\Rightarrow-5⋮x-2\)
- Để thỏa mãn yc đề bài thì : \(x-2\inƯ_{\left(-5\right)}\)
\(\Leftrightarrow x-2\in\left\{1;-1;5;-5\right\}\)
\(\Leftrightarrow x\in\left\{3;1;7;-3\right\}\)
Vậy ...
b, Có : \(3x+2⋮2x+1\)
\(\Leftrightarrow3x+1,5+0,5⋮2x+1\)
\(\Leftrightarrow1,5\left(2x+1\right)+0,5⋮2x+1\)
- Thấy 1,5 ( 2x +1 ) chia hết cho 2x+1
\(\Rightarrow1⋮2x+1\)
- Để thỏa mãn yc đề bài thì : \(2x+1\inƯ_{\left(1\right)}\)
\(\Leftrightarrow2x+1\in\left\{1;-1\right\}\)
\(\Leftrightarrow x\in\left\{0;-1\right\}\)
Vậy ...
a, x + 2 chia het cho x-1
x-1 chia het cho x-1
=> (x+2) - (x-1) chia het cho x-1
Hay 3 chia het cho x-1
x-1 thuoc U(3)
x-1 thuoc {1;3}
Ta co bang
x-1 | 1 | 3 |
x | 2 | 4 |
Vay x thuoc {2;4}
a) Ta có : x(x+1) là tích 2 số nguyên liên tiếp nên x(x+1) chia hết cho 2
Mà 1 không chia hết cho 2 nên x(x+1)+1 không chia hết cho 2.
Vậy ...
Các phần sau cũng có 1 số hạng không chia hết cho số kia còn các số khác chia hết cho số nên cả tổng đó không chia hết cho số kia, bạn tự chứng minh nhé!
b: \(C=xy\left(x^3+2\right)-y\left(xy^3+2x\right)\)
\(=x^4y+2xy-xy^4-2xy\)
\(=xy\left(x^3-y^3\right)\)
\(=xy\left(x-y\right)\left(x^2+xy+y^2\right)⋮x^2+xy+y^2\)
a: \(\Leftrightarrow12x-15⋮3x+1\)
\(\Leftrightarrow12x+4-19⋮3x+1\)
\(\Leftrightarrow3x+1\in\left\{1;-1;19;-19\right\}\)
hay \(x\in\left\{0;6\right\}\)
b: \(\Leftrightarrow6x-10⋮2x+1\)
\(\Leftrightarrow2x+1\in\left\{1;-1;13;-13\right\}\)
hay \(x\in\left\{0;-1;6;-7\right\}\)
a)
\(x^2+x+1\)
\(=x\left(x+1\right)+1\)
Vì \(x\left(x+1\right)\) là tích của 2 số nguyên liến tiếp nên tích của chúng là số chẵn
\(\Rightarrow x\left(x+1\right)+1\) là số lẻ
\(\left(x^2+x+1\right)\) không chia hết cho 2
b,
Ta có :
\(3\left(x^2+2x\right)⋮3\forall x\)
1 không chia hết cho 3
\(\Rightarrow\left[3\left(x^2+2x\right)+1\right]\) không chia hết cho 3
c,
\(\left(3x^2+6x+1\right)\)
\(=3\left(x^2+2x\right)+1\)
Ta có :
\(3\left(x^2+2x\right)⋮3\forall x\)
1 không chia hết cho 3
Vậy \(\left(3x^2+6x+1\right)\) không chia hết cho 3