Tìm số nguyên n sao cho n+2\(⋮\)n-3
Giúp mik với mik cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
g/s 2n+7 chia hết cho n-2
Ta có 2n+7 cia hết n-2
2-2 chia hết n-2 =>2(n-2) chia hết n-2=>2n-4 chia hết cho n-2
do đó 2n+7-(2n+4) chia hết n-2
(=)2n+7-2n-4 chia hết n-2
(=)3 chia hết n-2 => n-2 thuộc Ư(3).............
bn tự lm tiếp nha đến đây chỉ vc lập bả ng gtrị tìm n
ta có : 2n+7/n-2=2(n-2)+11/n-2=2(n-2)/n-2+11/n-2=2+11/n-2
Để 2n+7 chia hết cho n-2 thì 11/n-2 phải có giá trị nguyên
=>n-2 phải là ước của 11
=>n-2={-11;-1;1;11}
Ta có bảng
n-2 | -11 | -1 | 1 | 11 |
n | -9 | 1 | 3 | 13 |
Vậy n={-9;1;3;13}
\(\dfrac{1}{p}-\dfrac{1}{q}=\dfrac{9}{n}\) =>\(\dfrac{q-p}{pq}=\dfrac{9}{n}\) =>\(n=\dfrac{9pq}{q-p}\).
- Đặt pq=n , p-q=9
- Vì n là số nguyên nên: 9pq ⋮ (q-p)
*Gỉa sử p,q lẻ thì 9pq ⋮ 2 =>p⋮2 hoặc q⋮2 (vô lý).
*Gỉa sử p chẵn, q lẻ thì p⋮2 mà p là số nguyên tố nên p=2.
- p-q=9 =>2-q=9 =>q=-7 (không thỏa mãn).
*Gỉa sử q chẵn, p lẻ thì q⋮2 mà q là số nguyên tố nên q=2.
- p-q=9 =>p=11 (thỏa mãn).
- Vậy p=11 ; q=2.
Gọi An=2016n/2011+n.n! với n=1,2,3...
Ta so sánh 2 phân số
An=2016n/20n+11.n!,An+1=2016n+1/20n+12.(n+1)!
=>An=2016n.20.(n+1)/20n+12.(n+1)!,An+1=2016n.2016/20n+12.(n+1)!
Để so sánh tử số ta chỉ cần so sánh 20(n+1) với 2016.Khi đó ta thấy
20(n+1)<2016 <=> n < hoặc = 99 =>An<An+1 <=> n< hoặc = 99
20(n+1)>2016 <=> n > hoặc =100 =>An>An+1 <=> n> hoặc =100
Do đó A1<A2<...<A100>A101>A102>...
Vậy An đạt giá trị lớn nhất khi n=100
27:(x-3/2)^3=(x-3/2):3
Ta có: \(\dfrac{27}{\left(x-\dfrac{3}{2}\right)^3}=\dfrac{\left(x-\dfrac{3}{2}\right)}{3}\)
\(\Rightarrow\left(x-\dfrac{3}{2}\right)^3.\left(x-\dfrac{3}{2}\right)\)=27.3
\(\Rightarrow\left(x-\dfrac{3}{2}\right)^4\)=81
\(\Rightarrow\left(x-\dfrac{3}{2}\right)^4=3^4\)
\(\Rightarrow\left[{}\begin{matrix}x-\dfrac{3}{2}=4\\x-\dfrac{3}{2}=-4\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=4+\dfrac{3}{2}\\x=-4+\dfrac{3}{2}\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{8}{2}+\dfrac{3}{2}\\x=\dfrac{-8}{2}+\dfrac{3}{2}\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{11}{2}\\x=\dfrac{-5}{2}\end{matrix}\right.\)
Vậy x∈\(\left\{\dfrac{11}{2};\dfrac{-5}{2}\right\}\)
\(2n-1⋮n+3\)
\(2\left(n+3\right)⋮n+3\)
\(2n+6⋮n+3\)
\(\left(2n+6\right)-\left(2n-1\right)⋮n+3\)
\(2n+6-2n+1⋮n+3\)
\(7⋮n+3\)
\(\Rightarrow n+3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Ta lập bảng xét giá trị
n+3 | 1 | -1 | 7 | -7 |
n | -2 | -4 | 4 | -10 |
#include <bits/stdc++.h>
using namespace std;
const long long maxn=1e7+10;
long long a[maxn],i,n,ln;
int main()
{
freopen("capso.inp","r",stdin);
freopen("capso.out","w",stdout);
cin>>n;
for (i=1; i<=n; i++)
cin>>a[i];
sort(a+1,a+n+1);
ln=a[1]*a[2]*a[3];
for (i=2; i<=n-1; i++)
ln=max(ln,a[i-1]*a[i]*a[i+1]);
cout<<ln;
return 0;
}
5 + n2 - 2n \(⋮\)n - 2
=> 5 + n . n - 2 . n \(⋮\)n - 2
=> 5 + n . ( n - 2 ) \(⋮\)n - 2
=> 5 \(⋮\)n - 2 vì n . ( n - 2 ) đã chia hết cho n - 2
=> n - 2 \(\in\)Ư ( 5 ) = { 1 ; -1 ; 5 ; -5 }
Với n - 2 = 1 => n = 3
Với n - 2 = -1 => n = 1
Với n - 2 = 5 => n = 7
Với n - 2 = -5 => n = -3
Vậy : n \(\in\){ 3 ; 1 ; 7 ; -3 }
Để \(5+n^2-2n⋮n-2\)
\(\Leftrightarrow5+n.\left(n-2\right)⋮n-2\)
\(\Leftrightarrow5⋮n-2\)
\(\Leftrightarrow n-2\inƯ\left(5\right)\)
\(\Leftrightarrow n-2\in\left\{1;-1;5;-5\right\}\)
\(\Leftrightarrow n\in\left\{3;1;7;-3\right\}\)
Chúc bạn học tốt !!!!
Ta có n + 21 = n + 40
2n+5 chia hết cho 2n-1 <=> 2n-1+6 chia hết 2n-1
Mà 2n-1 chia hết 2n-1
=> Để 2n-1+6 chia hết 2n-1 thì 6 chia hết 2n-1
=> 2n-1 thuôc Ư(6) = {1,2,3,6}
TH1: 2n-1 =1 => n=1
TH2: 2n-1 = 2 => n= 3:2 không là số tự nhiên (loại)
TH3: 2n-1 = 3 => n=2
TH4: 2n-1 = 6 => n= 7:2 không là số tự nhiên (loại)
Vậy n có 2 giá trị là 1 và 2
\(n+2⋮n-3\)
\(n-3+5⋮n-3\)
\(5⋮n-3\Rightarrow n-3\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Ta có: \(n+2=n-3+5\)
Để \(n+2⋮n-3\)\(\Rightarrow\)\(n-3+5⋮n-3\)mà \(n-3⋮n-3\)
\(\Rightarrow\)\(5⋮n-3\)\(\Rightarrow\)\(n-3\inƯ\left(5\right)\in\left\{\pm1;\pm5\right\}\)
\(\Rightarrow\)\(n\in\left\{2;4;-2;8\right\}\)( các giá trị trên đều thoả mãn )
Vậy...........