Cho a,b,c>0, a+b+c=6.Chứng minh rằng:\(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\le6\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)Áp dụng BĐT Cauchy-Schwarz ta có:
\(VT^2=\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\)
\(\le2\cdot\left(1+1+1\right)\left(a+b+c\right)\le6\)
\(\Rightarrow VT^2\le6\Rightarrow VT\le\sqrt{6}=VP\)
Xảy ra khi \(a=b=c=\frac{1}{3}\)
b)Áp dụng BĐT Cauchy-Schwarz ta có:
\(VT^2=\left(\sqrt{a+\sqrt{b+\sqrt{2c}}}+\sqrt{b+\sqrt{c+\sqrt{2a}}}+\sqrt{c+\sqrt{a+\sqrt{2b}}}\right)^2\)
\(\le\left(1+1+1\right)\left(a+b+c+Σ\sqrt{b+\sqrt{2c}}\right)\)
\(=3\left(6+\sqrt{b+\sqrt{2c}+\sqrt{c+\sqrt{2a}}}+\sqrt{a+\sqrt{2b}}\right)\)
Đặt \(A^2=\left(\sqrt{b+\sqrt{2c}+\sqrt{c+\sqrt{2a}}}+\sqrt{a+\sqrt{2b}}\right)^2\)
\(\le\left(1+1+1\right)\left(a+b+c+\sqrt{2a}+\sqrt{2b}+\sqrt{2c}\right)\)
\(=3\left(6+\sqrt{2a}+\sqrt{2b}+\sqrt{2c}\right)\)
Đặt tiếp: \(B^2=\left(\sqrt{2a}+\sqrt{2b}+\sqrt{2c}\right)^2\)
\(\le2\cdot\left(1+1+1\right)\left(a+b+c\right)\le36\Rightarrow B\le6\)
\(\Rightarrow A^2\le3\left(6+\sqrt{2a}+\sqrt{2b}+\sqrt{2c}\right)\le3\cdot12=36\Rightarrow A\le6\)
\(\Rightarrow VT^2\le3\left(6+\sqrt{b+\sqrt{2c}+\sqrt{c+\sqrt{2a}}}+\sqrt{a+\sqrt{2b}}\right)\)
\(\le3\left(6+6\right)=3\cdot12=36\Rightarrow VT\le6=VP\)
Xảy ra khi \(a=b=c=2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a+b+c=3\\ \Leftrightarrow a\left(b+c+2\right)=ab+ac+a+b+c+1=\left(a+1\right)\left(b+c+1\right)\)
Tương tự:
\(b\left(c+a+2\right)=\left(b+1\right)\left(a+c+1\right)\\ c\left(a+b+2\right)=\left(c+1\right)\left(a+b+1\right)\)
Áp dụng BĐT cosi:
\(\left\{{}\begin{matrix}\left(a+1\right)\left(b+c+1\right)\le\dfrac{\left(a+1+b+c+1\right)^2}{2}=\dfrac{2^2}{2}=2\\\left(b+1\right)\left(a+c+1\right)\le\dfrac{\left(b+1+a+c+1\right)^2}{2}=\dfrac{2^2}{2}=2\\\left(c+1\right)\left(a+b+1\right)\le\dfrac{\left(c+1+a+b+1\right)^2}{2}=\dfrac{2^2}{2}=2\end{matrix}\right.\)
Cộng vế theo vế 2 BĐT trên:
\(\Leftrightarrow\sqrt{a\left(b+c+2\right)}+\sqrt{b\left(c+a+2\right)}+\sqrt{c\left(a+b+2\right)}\le2+2+2=6\)
Dấu \("="\Leftrightarrow a=b=c=1\)
anh oi, tại sao chỗ a(b + c + 2) = ab + ac + a + b + c + 1 được ạ? :<
![](https://rs.olm.vn/images/avt/0.png?1311)
Các vế đều dương nên bình phương hai vế ta được bất đẳng thức tương đương:
\(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2>a+b+c\)
\(\Leftrightarrow a+b+c+2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)>a+b+c\)
\(\Leftrightarrow2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)>0\)
Bất đẳng thức cuối luôn đúng với a, b, c > 0.
![](https://rs.olm.vn/images/avt/0.png?1311)
Theo BĐT Bu nhi a cốp xki ta có :
\(VT=\sqrt{a+3b}+\sqrt{b+3c}+\sqrt{c+3a}\le\sqrt{3\left(4a+4b+4c\right)}=\sqrt{12\left(a+b+c\right)}=\sqrt{36}=6\)
Vậy đpcm . Dấu bằng xảy ra khi \(a=b=c=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Asp dụng bđt AM-GM ta có
\(\frac{\left(\frac{b+c}{a}+1\right)}{2}\ge\sqrt{\frac{b+c}{a}.1}\)
\(\Leftrightarrow\frac{a+b+c}{2a}\ge\sqrt{\frac{b+c}{a}}\) hay \(\sqrt{\frac{a}{b+c}}\ge\frac{2a}{a+b+c}\)(1)
Tương tự
\(\sqrt{\frac{b}{b+c}}\ge\frac{2b}{a+b+c}\)(2)
\(\sqrt{\frac{c}{c+a}}\ge\frac{2c}{a+b+c}\)(3)
Từ (1),(2),(3) ta có
\(VT\ge\frac{2\left(a+b+c\right)}{a+b+c}=2\)
dấu "=" xảy ra khi \(\hept{\begin{cases}\sqrt{\frac{a}{a+b}}=1\\\sqrt{\frac{b}{b+c}}=1\\\sqrt{\frac{c}{c+a}}=1\end{cases}}\)(vô lí )
Vậy dấu "=" không xảy ra
do đó \(VT>2\)
ღ๖ۣۜLinh's ๖ۣۜLinh'sღ] ★we are one★ bạn viết sai rồi kia. xem đề coi có sai ko đã
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng BĐT AM-GM ta có a+b+c\(\ge2\sqrt{a\left(b+c\right)}\Leftrightarrow\sqrt{\frac{a}{b+c}}\ge\frac{2a}{a+b+c}\)
Chứng minh tương tự ta có:\(\hept{\begin{cases}\sqrt{\frac{b}{c+a}}\ge\frac{2b}{a+b+c}\\\sqrt{\frac{c}{a+b}}\ge\frac{2c}{a+b+c}\end{cases}}\)
=> \(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}\ge\frac{2\left(a+b+c\right)}{a+b+c}=2\)
Dấu "=" xảy ra <=>\(\hept{\begin{cases}a=b+c\\b=c+a\\c=a+b\end{cases}\Leftrightarrow a=b=c=0}\)(trái với giả thiết)
Vậy dấu "=" không xảy ra => đpcm
Áp dụng BĐT Cô-si,ta có :
\(\sqrt{\frac{b+c}{a}.1}\le\frac{\frac{b+c}{a}+1}{2}=\frac{b+c+a}{2a}\)
\(\Rightarrow\sqrt{\frac{a}{b+c}}\ge\frac{2a}{a+b+c}\)
Tương tự : \(\sqrt{\frac{b}{c+a}}\ge\frac{2b}{a+b+c};\sqrt{\frac{c}{a+b}}\ge\frac{2c}{a+b+c}\)
Cộng từng vế theo vế, ta được :
\(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}\ge\frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a=b+c\\b=a+c\\c=a+b\end{cases}\Rightarrow a+b+c=0}\)( trái với giả thiết vì a,b,c > 0 )
Nên dấu "=" không xảy ra
Vậy ...
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có
\(\sqrt{a+b}+\sqrt{a-b}< \sqrt{a+c}+\sqrt{a-c}\)
\(\Rightarrow\frac{\sqrt{a+b}+\sqrt{a-b}}{2}< \frac{\sqrt{a+c}+\sqrt{a-c}}{2}\)
\(\Rightarrowđpcm\)(liên hợp)
Áp dụng BĐT Bunyakovsky ta có:
\(\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\le\left(1^2+1^2+1^2\right)\left(a+b+b+c+c+a\right)\)
\(=3\cdot2\left(a+b+c\right)=3\cdot2\cdot6=36\)
\(\Rightarrow\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\le6\)
Dấu "=" xảy ra khi: a = b = c = 2