Tìm nghiệm nguyên của phương trình
\(x^2+y^2+z^2=\left(xy\right)^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
thi cấp tỉnh mà với có 1 số bài thi vào chuyên đại học với cấp 3 nữa
Bài 2: Ta có:
\(\left(2x+5y+1\right)\left(2020^{\left|x\right|}+y+x^2+x\right)=105\) là số lẻ
\(\Rightarrow\left\{{}\begin{matrix}2x+5y+1\\2020^{\left|x\right|}+y+x^2+x\end{matrix}\right.\) đều lẻ
\(\Rightarrow y⋮2\)\(\Rightarrow2020^{\left|x\right|}⋮̸2\Leftrightarrow\left|x\right|=0\Leftrightarrow x=0\).
Thay vào tìm được y...
<=> x^2 + y^2 + z^2 - xy - 3y - 2z + 4 <= 0
<=> (x^2 - xy + 1/4y^2) + (3/4y^2 - 3y + 3) + (z^2 - 2z + 1) <= 0
<=> (x^2 - xy + 1/4y^2) + 3(1/4y^2 - y + 1) + (z^2 - 2z + 1) <=0
<=> (x-1/2y)^2 + 3(1/2y-1)^2 + (z-1)^2 <=0
Nhận xét: 3 cái bình phương đều >=0 với mọi x,y,z nên VT>=0 với mọi x,y,z. Để bất phương trình đúng thì VT=0 <=> 3 cái đồng thời = 0
<=> x = 1/2y và 1/2y = 1 và z = 1.
Bạn giải 3 phương trình trên => x = 1, y = 2, z = 1.
ta có \(5\left(x^2+xy+y^2\right)=7\left(x+2y\right)\)
zì 5 , 7 là 2 số nguyên tố cùng nhau . Nên
\(\hept{\begin{cases}x+2y=5m\\x^2+xy+y^2=7m\end{cases}m\inℤ}\)
từ \(x+2y=5m=>5m-2y=x.\)thay zô \(x^2+xy+y^2=7m\)zà rút gọn ta được
\(\left(5m-2y\right)^2+\left(5m-2y\right)y+y^2=7m\Leftrightarrow3y^2-15my+25m^2-7m=0\left(1\right)\)
=>\(3\left(y^2-5my\right)+25m^2-7m=0=>3\left(y-\frac{5m}{2}\right)^2-\frac{75m^2}{4}=7m-25m^2\)
=>\(3\left(y-\frac{5m}{2}\right)^2=\frac{1}{4}\left(-25m^2+28m\right)\)
zì \(3\left(y-\frac{5m}{2}\right)^2\ge0\forall m,y\)
=>\(\frac{1}{4}\left(-25m^2+28m\right)\ge0\Leftrightarrow25m^2-28m\le0\Leftrightarrow m\left(m-\frac{28}{25}\right)\le0\Leftrightarrow0\le m\le\frac{28}{25}\)
mà \(m\inℤ\)nên \(m\in\left\{0,1\right\}\)
zới m=0 thay zô (1) ta được y=0. từ đó tính đc x=0
zới m =1 thây zô (1) ta được \(3y^2-15y+18=0=>y^2-5y+6=0=>\orbr{\begin{cases}y=2\\y=3\end{cases}}\)
zới y=2 , m=1 thì ta tính đc x=1
zới y=3 , m=1 thì ta tính đc x=-1
zậy \(\left(x,y\right)\in\left\{\left(0,0\right);\left(1,2\right)\left(-1,3\right)\right\}\)
1/ Ta chứng minh với \(x>6\)thì \(10.2^x>13x^2\) cái này dùng quy nạp chứng minh được:
Từ đây ta xét với \(x>6\)thì
\(\Rightarrow\hept{\begin{cases}10.2^6-13x^2>0\\10-3x< 0\end{cases}}\)
\(\Rightarrow\)Phương trình vô nghiệm.
Giờ chỉ cần kiểm tra \(x=1;2;3;4;5;6\) xem cái nào thỏa mãn nữa là xong.
2/ \(3^x+1=\left(y+1\right)^2\)
\(\Leftrightarrow3^x=y\left(y+2\right)\)
Với \(y=1\)
\(\Rightarrow x=1\)
Với \(y>1\)
Với \(y⋮3\)\(\Rightarrow y+2⋮̸3\)
Với \(y+2⋮3\)\(\Rightarrow y⋮̸3\)
Vậy \(x=1,y=1\)
3(x2 + xy + y2) = x + 8y
<=> 3x2 + (3y - 1)x + (3y2 - 8y) = 0
Để phương trình theo nghiệm x có nghiệm thì
∆ = (3y - 1)2 - 4.3.(3y2 - 8y) \(\ge\)0
<=> - 27y2 + 90y + 1 \(\ge\)0
<=> - 0,011 \(\le\)y \(\le\)3,344
Mà vì y nguyên nên
\(\Rightarrow0\le y\le3\)
\(\Rightarrow\)y = (0, 1, 2, 3)
\(\Rightarrow\)x = (...)
Cặp nào nguyên thì nhận. Không nguyên thì loại
bài 1
coi bậc 2 với ẩn x tham số y D(x) phải chính phường
<=> (2y-3)^2 -4(2y^2 -3y+2) =k^2
=> -8y^2 +1 =k^2 => y =0
với y =0 => x =-1 và -2
G/s \(\left(x,y,z\right)=\left(x_1,y_1,z_1\right)\) là 1 nghiệm của PT (Mọi biến đặt từ đầu đến cuối bài đều nhận giá trị nguyên)
Khi đó ta có: \(x_1^2+y_1^2+z_1^2=\left(x_1y_1\right)^2\) (1)
Nếu trong 2 số x1 , y1 tồn tại ít nhất 1 số chia hết cho 3
\(\Rightarrow x_1y_1\) chia hết cho 3, khi đó \(z_1^2\) chia hết cho 3 => z1 cũng chia hết cho 3
Như vậy 3 số x1 ; y1 ; z1 luôn cùng chia hết cho 3
Thật vậy, nếu cả 3 số trên đều không chia hết cho 3
Vì 1 số chính phương nếu không chia hết cho 3 thì chỉ có thể chia 3 dư 1 nên:
\(x_1^2+y_1^2+z_1^2\equiv1+1+1\equiv0\left(mod.3\right)\) => VT(1) chia hết cho 3
Mà \(\left(x_1y_1\right)^2\) không chia hết cho 3
=> Vô lý
Vậy \(x_1,y_1,z_1\) đều cùng chia hết cho 3
Đặt \(\left(x_1,y_1,z_1\right)=\left(3x_2,3y_2,3z_2\right)\)
Khi đó \(Pt\left(1\right)\Leftrightarrow\left(3x_2\right)^2+\left(3y_2\right)^2+\left(3z_2\right)^2=\left(3x_2\cdot3y_2\right)^2\)
\(\Leftrightarrow9\left(x_2^2+y_2^2+z_2^2\right)=81\left(x_2y_2\right)^2\)
\(\Leftrightarrow x_2^2+y_2^2+z_2^2=9\left(x_2y_2\right)^2\)
Cứ lập luận tương tự như vậy thì đến 1 lúc nào đó PT sẽ nhận nghiệm:
\(\left(x,y,z\right)=\left(3^nx_1,3^ny_1,3^nz_1\right)\) với n là số nguyên dương tùy ý
Tồn tại duy nhất 1 nghiệm thỏa mãn tính vô hạn của PT lúc đó: x = y = z = 0
Vậy x = y = z = 0