K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
17 tháng 4 2021

1.

\(\lim\limits_{x\to +\infty}(x^3+3x^2+2)=+\infty\)

2. 

\(\lim\limits_{x\to -\infty}\sqrt{4x^2-x+5}=\lim\limits_{x\to -\infty}-x.\sqrt{4+\frac{1}{x}+\frac{5}{x^2}}=+\infty\) do $-x\to +\infty$ và $\lim\limits_{x\to -\infty}\sqrt{4+\frac{1}{x}+\frac{5}{x^2}}=4>0$

 

AH
Akai Haruma
Giáo viên
17 tháng 4 2021

3.

\(\lim\limits_{x\to +\infty}(\sqrt{x^2-2x-1}-\sqrt{x^2-7x+3})=\lim\limits_{x\to +\infty}\frac{x^2-2x-1-(x^2-7x+3)}{\sqrt{x^2-2x-1}+\sqrt{x^2-7x+3}}\)

\(=\lim\limits_{x\to +\infty}\frac{5x-4}{\sqrt{x^2-2x-1}+\sqrt{x^2-7x+3}}=\lim\limits_{x\to +\infty}\frac{5-\frac{4}{x}}{\sqrt{1-\frac{2}{x}-\frac{1}{x^2}}+\sqrt{1-\frac{7}{x}+\frac{3}{x^2}}}\)

\(=\frac{5}{1+1}=\frac{5}{2}\)

 

20 tháng 12 2019

a) x = 2 7                         b) x = 2.

c) x = 2                          d) x = 1.

27 tháng 12 2021

1: \(=x^2+1\)

3: \(=\left(x-y-z\right)^2\)

6 tháng 7 2021

\(a,PT\Leftrightarrow x^3-6x^2+12x-8-x^3+x+6x^2-18x-10=0\)

\(\Leftrightarrow-5x-18=0\)

\(\Leftrightarrow x=-\dfrac{18}{5}\)

Vậy ...

\(b,PT\Leftrightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1-6x^2+12x-6+10=0\)

\(\Leftrightarrow12x+6=0\)

\(\Leftrightarrow x=-\dfrac{1}{2}\)

Vậy ...

\(c,PT\Leftrightarrow\left(x+1\right)^3+3^3=0\)

\(\Leftrightarrow\left(x+1+3\right)\left(x^2+2x+1-3x-3+9\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(x^2-x+7\right)=0\)

Thấy : \(x^2-\dfrac{2.x.1}{2}+\dfrac{1}{4}+\dfrac{27}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{27}{4}\ge\dfrac{27}{4}>0\)

\(\Rightarrow x+4=0\)

\(\Leftrightarrow x=-4\)

Vậy ...

\(d,PT\Leftrightarrow\left(x-2\right)^3+1^3=0\)

\(\Leftrightarrow\left(x-2+1\right)\left(x^2-4x+4-x+2+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-5x+7\right)=0\)

Thấy : \(x^2-5x+7=x^2-\dfrac{5.x.2}{2}+\dfrac{25}{4}+\dfrac{3}{4}=\left(x-\dfrac{5}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)

\(\Rightarrow x-1=0\)

\(\Leftrightarrow x=1\)

Vậy ...

6 tháng 7 2021

sao lại trả lời lại nhỉ ??

AH
Akai Haruma
Giáo viên
14 tháng 10 2018

1)

ĐK: \(x\geq 5\)

PT \(\Leftrightarrow \sqrt{4(x-5)}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9(x-5)}=6\)

\(\Leftrightarrow \sqrt{4}.\sqrt{x-5}+3\sqrt{\frac{1}{9}}.\sqrt{x-5}-\frac{1}{3}.\sqrt{9}.\sqrt{x-5}=6\)

\(\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=6\)

\(\Leftrightarrow 2\sqrt{x-5}=6\Rightarrow \sqrt{x-5}=3\Rightarrow x=3^2+5=14\)

AH
Akai Haruma
Giáo viên
14 tháng 10 2018

2)

ĐK: \(x\geq -1\)

\(\sqrt{x+1}+\sqrt{x+6}=5\)

\(\Leftrightarrow (\sqrt{x+1}-2)+(\sqrt{x+6}-3)=0\)

\(\Leftrightarrow \frac{x+1-2^2}{\sqrt{x+1}+2}+\frac{x+6-3^2}{\sqrt{x+6}+3}=0\)

\(\Leftrightarrow \frac{x-3}{\sqrt{x+1}+2}+\frac{x-3}{\sqrt{x+6}+3}=0\)

\(\Leftrightarrow (x-3)\left(\frac{1}{\sqrt{x+1}+2}+\frac{1}{\sqrt{x+6}+3}\right)=0\)

\(\frac{1}{\sqrt{x+1}+2}+\frac{1}{\sqrt{x+6}+3}>0, \forall x\geq -1\) nên $x-3=0$

\(\Rightarrow x=3\) (thỏa mãn)

Vậy .............

NV
26 tháng 2 2021

ĐKXĐ: \(x\ge-2\)

\(\Leftrightarrow x^3+3x\left(x+2\right)-4\left(x+2\right)\sqrt{x+2}=0\)

Đặt \(\sqrt{x+2}=y\ge0\) pt trở thành:

\(x^3+3xy^2-4y^3=0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+4y^2\right)=0\)

\(\Leftrightarrow x=y\Leftrightarrow\sqrt{x+2}=x\) (\(x\ge0\))

\(\Leftrightarrow x^2=x+2\Leftrightarrow x=2\)

26 tháng 2 2021

\(ĐKXĐ:x\ge-2\)

\(\Leftrightarrow x^3+3x^2+6x-4x\sqrt{x+2}-8\sqrt{x+2}=0\Leftrightarrow4x^2-4x\sqrt{x+2}+8x-8\sqrt{x+2}+x^3-x\left(x+2\right)=0\Leftrightarrow4x\left(x-\sqrt{x+2}\right)+8\left(x-\sqrt{x+2}\right)+x\left(x-\sqrt{x+2}\right)\left(x+\sqrt{x+2}\right)=0\)\(\Leftrightarrow\left(x-\sqrt{x+2}\right)\left(x^2+x\sqrt{x+2}+4x+8\right)=0\Leftrightarrow\left[{}\begin{matrix}x-\sqrt{x+2}=0\left(1\right)\\x^2+x\sqrt{x+2}+4x+8=0\left(2\right)\end{matrix}\right.\) Từ (1) \(\Rightarrow x=\sqrt{x+2}\left(x\ge0\right)\Rightarrow x^2=x+2\Leftrightarrow x^2-x-2=0\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\left(TM\right)\\x=-1\left(L\right)\end{matrix}\right.\) Từ (2) \(\Rightarrow x^2+x\sqrt{x+2}+4x+8\ge\left(-2\right)^2+\left(-2\right)\sqrt{-2+2}+4\left(-2\right)+8=4>0\) \(\Rightarrow\) ko có x 

vậy...

ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\ne4\end{matrix}\right.\)

\(\left(\dfrac{6x+4\sqrt{x}}{x\sqrt{x}-4\sqrt{x}}-\dfrac{6}{3\sqrt{x}+6}+1\right):\dfrac{1}{\sqrt{x}-2}\)

\(=\left(\dfrac{2\sqrt{x}\left(3\sqrt{x}+2\right)}{\sqrt{x}\left(x-4\right)}-\dfrac{6}{3\left(\sqrt{x}+2\right)}+1\right):\dfrac{1}{\sqrt{x}-2}\)

\(=\left(\dfrac{2\left(3\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\dfrac{2}{\sqrt{x}+2}+1\right):\dfrac{1}{\sqrt{x}-2}\)

\(=\dfrac{6\sqrt{x}+4-2\left(\sqrt{x}-2\right)+x-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}-2}{1}\)

\(=\dfrac{x+6\sqrt{x}-2\sqrt{x}+4}{\left(\sqrt{x}+2\right)}=\dfrac{\left(\sqrt{x}+2\right)^2}{\left(\sqrt{x}+2\right)}\)

\(=\sqrt{x}+2\)

27 tháng 6 2018

a) \(\sqrt{\sqrt{2\sqrt{6}+6+2\sqrt{2}+2\sqrt{3}-\sqrt{5+2\sqrt{6}}}}\)

\(=\sqrt{1+\sqrt{2}+\sqrt{3}-\left(\sqrt{3}+\sqrt{2}\right)}=1\)

b) \(A=\sqrt{x^2-6x+9}-\dfrac{x^2-9}{\sqrt{9-6x+x^2}}\)

\(=\left|x-3\right|-\dfrac{\left(x-3\right)\left(x+3\right)}{\left|x-3\right|}\)

Th1: x-3 < 0

\(A=\left(3-x\right)-\dfrac{\left(x-3\right)\left(x+3\right)}{3-x}=3-x+x-3=0\)

Th2: x-3 > 0

\(A=x-3-\dfrac{\left(x-3\right)\left(x+3\right)}{x-3}=x-3-\left(x+3\right)=-6\)

c)

Đk: x >/ 1 \(B=\dfrac{\sqrt{x+\sqrt{4\left(x-1\right)}}-\sqrt{x-\sqrt{4\left(x-1\right)}}}{\sqrt{x^2-4\left(x-1\right)}}\cdot\left(\sqrt{x-1}-\dfrac{1}{\sqrt{x-1}}\right)\)

\(=\dfrac{\sqrt{x+2\sqrt{x-1}}-\sqrt{x-2\sqrt{x-1}}}{\sqrt{x^2-4\left(x-1\right)}}\cdot\dfrac{x-2}{\sqrt{x-1}}\)

\(=\dfrac{\sqrt{x-1}+1-\left|\sqrt{x-1}-1\right|}{\left|x-2\right|}\cdot\dfrac{x-2}{\sqrt{x-1}}\)

Th1: \(x-2\ge0\Leftrightarrow x\ge2\)

\(B=\dfrac{\sqrt{x-1}+1-\sqrt{x-1}+1}{x-2}\cdot\dfrac{x-2}{\sqrt{x-1}}=\dfrac{2}{\sqrt{x-1}}\)

Th2: \(x-2\le0\Leftrightarrow x\le2\)

kết hợp với đk, ta được: 1 \< x \< 2

\(=\dfrac{\sqrt{x-1}+1-\sqrt{x-1}-1}{2-x}\cdot\dfrac{x-2}{\sqrt{x-1}}=0\)

d) \(A=\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}=\sqrt{x-2}+\sqrt{2}+\left|\sqrt{x-2}-\sqrt{2}\right|=\sqrt{x-2}+\sqrt{2}-\sqrt{x-2}+\sqrt{2}=2\sqrt{2}\)

chẳng biết có sai sót gì 0 nữa, xin lỗi tớ 0 xem lại đâu vì chán quá!