K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2021
(x-y)^2=(x-y).(x-y)=(x-y)-y.(x-y) =X^2-xy-xy+y^2=x^2-2xy+y^2 (y-x)^2=(y-x)(y-x)=y(y-x)-x(y-x) =y^2-xy-xy+x^2=y^2-2xy+x^2 =>(x-y)^2=(y-x)^2
18 tháng 4 2018

16 tháng 6 2016

Lấy hai vế trừ đi cho nhau rồi nếu có kết quả =0 thì hai hằng đẳng thức này bằng nhau

18 tháng 3 2019

\(B=\left(y^2-x^2\right)=\left(y-x\right)\left(y+x\right)\)

\(A-B=\left(y-x\right)\left(2x-y\right)\).Do \(\left(x-y\right)⋮11\Rightarrow-1\left(x-y\right)⋮11\Rightarrow y-x⋮11\)

Đặt y - x = 11k.Ta có: \(A-B=11k\left(2x-y\right)⋮11^{\left(đpcm\right)}\)

6 tháng 11 2019

4 tháng 10 2018

1 tháng 2 2016

Chưa phân loại

1 tháng 2 2016

x-y-z=0

=>x=y+z

=>x2=y2+z2+2yz

=>y2+z2=x2-2yz

*A=xyz-xy2-xz2=x.(yz-y2-z2)=x.[yz-(x2-2yz)]=x.(3yz-x2)=3xyz-x3

*B=y3+z3=(y+z)(x2-yz+z2)=x.(x2-2yz-yz)=x3-3xyz=-(3xyz-x3)

Vậy A và B đối nhau

2 tháng 8 2019

a) \(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)

2 tháng 8 2019

c) \(C=4x-10-x^2=-\left(x^2-4x+10\right)\)

\(=-\left(x^2-4x+4+6\right)=-\left[\left(x-2\right)^2+6\right]\)

\(=-\left(x^2-4x+4+6\right)=-\left[\left(x-2\right)^2\right]-6\le-6< 0\forall x\)

11 tháng 11 2021

\(1,=\left(x-y\right)^2:\left(x-y\right)^2=1\\ 2,P=\left(x+y+x-y\right)^2=4x^2\\ 3,=\left(x+1\right)^2=\left(-1+1\right)^2=0\\ 4,\)

Áp dụng PTG, độ dài đường chéo là \(\sqrt{4^2+6^2}=2\sqrt{13}\left(cm\right)\)

11 tháng 11 2021

Câu 1:

 \(\left(x-y\right)^2:\left(y-x\right)^2\\ =\left(x-y\right)^2:\left(x-y\right)^2\\ =1\)

Câu 2:

\(\left(x+y\right)^2+\left(x-y\right)^2+2\left(x+y\right)\left(x-y\right)=\left(x+y+x-y\right)^2=\left(2x\right)^2=4x^2\)

Câu 3:

\(x^2+2x+1=\left(x+1\right)^2=\left(-1+1\right)^2=0\)

Câu 4:

Gọi hcn đó là ABCD có chiều dài là AB, chiều rộng là AD

Áp dụng Pi-ta-go ta có:\(AB^2+AD^2=AC^2\Rightarrow AC=\sqrt{4^2+6^2}=2\sqrt{13}\left(cm\right)\)