Giải phương trình \(\left(x-1\right)^8+\left(x-2\right)^{10}=1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Bài 4 :
24 phút = \(\dfrac{24}{60} = \dfrac{2}{5}\) giờ
Gọi thời gian dự định đi từ A đến B là x(giờ) ; x > 0
Suy ra quãng đường AB là 36x(km)
Khi vận tốc sau khi giảm là 36 -6 = 30(km/h)
Vì giảm vận tốc nên thời gian đi hết AB là x + \(\dfrac{2}{5}\)(giờ)
Ta có phương trình:
\(36x = 30(x + \dfrac{2}{5})\\ \Leftrightarrow x = 2\)
Vậy quãng đường AB dài 36.2 = 72(km)

1) |x| + x2 - x = x + 10 (1)
Nếu x < 0 thì
|x| = - x
Khi đó (1) <=> x2 - 3x - 10 = 0
Có \(\Delta=\left(-3\right)^2-4.\left(-10\right).1=49>0\)
=> Phương trình 2 nghiệm : \(x_1=\dfrac{3+\sqrt{49}}{2}=5\left(\text{loại}\right);x_2=\dfrac{3-\sqrt{49}}{2}=-2\)
Nếu \(x\ge0\Leftrightarrow\left|x\right|=x\)
Phương trình (1) <=> x2 - x - 10 = 0
\(\Delta=\left(-1\right)^2-4.\left(-10\right).1=41>0\)
=> Phương trình 2 nghiệm \(x_1=\dfrac{1+\sqrt{41}}{2};x_2=\dfrac{1-\sqrt{41}}{2}\left(\text{loại}\right)\)
Vậy tập nghiệm phương trình \(S=\left\{-2;\dfrac{1+\sqrt{41}}{2}\right\}\)

\(\left(x-2\right)\left(x-1\right)\left(x-4\right)\left(x-8\right)=4x^2\)
\(\Leftrightarrow[\left(x-2\right)\left(x-4\right)][\left(x-1\right)\left(x-8\right)]=4x^2\)
\(\Leftrightarrow\left(x^2-6x+8\right)\left(x^2-9x+8\right)=4x^2\)
thấy \(x=0;2\) không phải nghiệm của phương trình nên ta chia hai vế của pt cho \(x^2\) ta được \(:\)
\(\Leftrightarrow\left(x+\dfrac{8}{x}-9\right)\left(x+\dfrac{8}{x}-6\right)=4\)
\(Đặt:\) \(x+\dfrac{8}{x}=a\) thì pt trở thành \(:\)
\(\left(a-6\right)\left(a-9\right)=4\)
\(\Leftrightarrow a^2-15a+50=0\)
\(\Leftrightarrow\left(a-5\right)\left(a-10\right)=0\Leftrightarrow\left\{{}\begin{matrix}a=5\\a=10\end{matrix}\right.\)
\(Với\) \(a=5\) thì \(x+\dfrac{8}{x}=5\Leftrightarrow x^2-5x+8=0\left(vônghiem\right)\)
\(Với\) \(a=10\) thì \(x+\dfrac{8}{x}=10\Leftrightarrow x^2-10x+8=0\Leftrightarrow\left\{{}\begin{matrix}x=5-căn17\\x=5+căn17\end{matrix}\right.\)
\(Vậy...\)

đkxđ: x khác 0
\(\Leftrightarrow8.\left(x+\dfrac{1}{x}\right)\left(x+\dfrac{1}{x}\right)-4\left(x^2+\dfrac{1}{x^2}\right)\left(x+\dfrac{1}{x}\right)+4\left(x^2+\dfrac{1}{x^2}\right)^2=x^2+8x+16\)
\(\Leftrightarrow\left(x+\dfrac{1}{x}\right)\left[\left(8.x+\dfrac{1}{x}\right)-4\left(x^2+\dfrac{1}{x^2}\right)\right]+4\left(x^4+2+\dfrac{1}{x^2}\right)-x^2-8x-16=0\)
\(\Leftrightarrow\left(x+\dfrac{1}{x}\right)\left[\left(\dfrac{8x^2+1}{x}-4x^2-\dfrac{4}{x^2}\right)\right]+4x^4+8+\dfrac{4}{x^2}-x^2-8x-16=0\)
\(\Leftrightarrow\left(x+\dfrac{1}{x}\right)\left(\dfrac{x\left(8x^2+1\right)}{x^2}-\dfrac{4x^2.x^2}{x^2}-\dfrac{4}{x^2}\right)+......=0\)
\(\Leftrightarrow\left(x+\dfrac{1}{x}\right)\left(\dfrac{8x^3+x-4x^4-4}{x^2}\right)+...=0\)
\(\Leftrightarrow\dfrac{x^2}{x}.-\dfrac{4x^4+8x^3+x-4}{x^2}+.....=0\)
\(\Leftrightarrow-\dfrac{4x^6+8x^5+x^3-4x^2}{x^3}+\dfrac{4x^4+8+4x^2}{1}-\dfrac{x^2-8x-16}{1}=0\)
\(\Leftrightarrow......+\dfrac{x^3.\left(4x^4+8+4x^2\right)}{x^3}-\dfrac{x^3\left(x^2-8x-16\right)}{x^3}=0\)
\(\Leftrightarrow-4x^6+8x^5+x^3-4x^2+4x^7+8x^3+4x^5-x^5+8x^4+16x^3=0\)
\(\Leftrightarrow4x^7-4x^6+12x^5+8x^4+25x^3-4x^2=0\)
=> x=0 ( loại , ko tm)
Vậy pt vô nghiệm

với x=1 không phải nghiêm
(x-1) khác 0
nhân hai vế với (x-1)
x^16-1=x-1
=> x^16=x=> x=0
Làm gọn thế :)
Ta dễ thấy x = 1 không phải là nghiệm của pt nên ta nhân 2 vế cho (x - 1)
\(\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\left(x^4+1\right)\left(x^8+1\right)=x-1\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2+1\right)\left(x^4+1\right)\left(x^8+1\right)=x-1\)
\(\Leftrightarrow\left(x^4-1\right)\left(x^4+1\right)\left(x^8+1\right)=x-1\)
\(\Leftrightarrow\left(x^8-1\right)\left(x^8+1\right)=x-1\)
\(\Leftrightarrow\left(x^{16}-1\right)=x-1\)
\(\Leftrightarrow x^{16}-x=0\)
\(\Leftrightarrow\left(x-1\right)x\left(x^2+x+1\right)\left(x^4+x^3+x^2+x+1\right)\left(x^8-x^7+x^5-x^4+x^3-x+1\right)=0\)
\(\Leftrightarrow x=0\)(mấy cái còn lại đều khác 0 hết)

1. \(\left\{{}\begin{matrix}3x^2+y^2+4xy=8\left(1\right)\\\left(x+y\right)\left(x^2+xy+2\right)=8\end{matrix}\right.\)
=> \(3x^2+3xy+xy+y^2=\left(x+y\right)\left(x^2+xy+2\right)\)
<=> \(\left(x+y\right)\left(3x+y\right)=\left(x+y\right)\left(x^2+xy+2\right)=0\)
<=> \(\left(x+y\right)\left(x^2+xy+2-3x-y\right)=0\)
<=> \(\left[{}\begin{matrix}x=-y\\x^2+xy+2-3x-y=0\end{matrix}\right.\)
TH1: x = -y thay vào pt (1), ta được:
3y2 + y2 - 4y2 = 8
<=> 0y = 8 (vô lí)
TH2: \(x^2+xy+2-3x-y=0\)
<=> x (x + y) - (x + y) - 2(x - 1) = 0
<=> (x - 1)(x + y) - 2(X - 1) = 0
<=> (x - 1)(x + y - 2) = 0
<=> \(\left[{}\begin{matrix}x=1\\x+y-2=0\end{matrix}\right.\)
Với x = 1 thay vào pt (1) -> 3 + y2 + 4y = 8
<=> y2 + 4y - 5 = 0 <=> (y + 5)(y - 1) = 0
<=> \(\left[{}\begin{matrix}y=-5\\y=1\end{matrix}\right.\)
Với x + y - 2 = 0 => x = 2 - y thay vào pt (1)
=> 3(2 - y)2 + y2 + 4(2 - y)y = 8
<=> 3y2 - 12y + 12 + y2 + 8 - 4y2 = 8
<=> 12 = 12y <=> y= 1 => x = 2 - 1 = 1
Vậy ....

\(\left\{{}\begin{matrix}\left(x-2\right)\left(y+1\right)=xy\\\left(x+8\right)\left(y-2\right)=xy\end{matrix}\right.\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\\\ \) \(\left\{{}\begin{matrix}xy+x-2y-2-xy=0\\xy-2x+8y-16-xy=0\end{matrix}\right.\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \)\(\left\{{}\begin{matrix}x-2y=2\\-2x+8y=16\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x-2y=2\\-x+4y=8\end{matrix}\right.\)\(\left\{{}\begin{matrix}2y=10\\x-2y=2\end{matrix}\right.\) \(\left\{{}\begin{matrix}y=5\\x-10=2\end{matrix}\right.\)\(\left\{{}\begin{matrix}y=5\\x=12\end{matrix}\right.\)
Vậy hpt có nghiệm duy nhất là (x;y) = (12;5)
Ta có: \(\left\{{}\begin{matrix}\left(x-2\right)\left(y+1\right)=xy\\\left(x+8\right)\left(y-2\right)=xy\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy+x-2y-2-xy=0\\xy-2x+8y-16-xy=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-2y-2=0\\-2x+8y-16=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2y=2\\-2x+8y=16\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-4y=4\\-2x+8y=16\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4y=20\\x-2y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=5\\x=2+2y=2+2\cdot5=12\end{matrix}\right.\)
Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=12\\y=5\end{matrix}\right.\)

b: Ta có: \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=0\)
\(\Leftrightarrow\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24=0\)
\(\Leftrightarrow\left(x^2+7x\right)^2+22\left(x^2+7x\right)+120-24=0\)
\(\Leftrightarrow x^2+7x+6=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-6\end{matrix}\right.\)
Xét các TH sau:
Nếu \(x< 1\) khi đó: \(x-2< -1\Leftrightarrow\left(x-2\right)^{10}>1\)
=> vô lý
Nếu \(x=1\Rightarrow\left(1-1\right)^8+\left(1-2\right)^{10}=1\left(tm\right)\)
Nếu \(1< x< 2\) \(\Rightarrow\left(x-1\right)^8+\left(x-2\right)^{10}< 1\)
=> vô lý
Nếu \(x=2\Rightarrow\left(2-1\right)^8+\left(2-2\right)^{10}=1\left(tm\right)\)
Nếu \(x>2\Rightarrow x-1>1\Rightarrow\left(x-1\right)^8>1\)
=> vô lý
Vậy \(x\in\left\{1;2\right\}\)