K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2020

Có điều kiện không??

8 tháng 11 2019

Ta có  3 x + y = 2 m + 9 x + y = 5 ⇔ x = m + 2 y = 3 − m

⇒ A = x y + x – 1 = 8 – ( m – 1 ) 2

  A m a x   =   8 khi m = 1

Đáp án: A

NV
13 tháng 6 2021

\(y'=3x^2-6x-9=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)

a. Trên [-4;4] ta có: 

\(y\left(-4\right)=-41\) ; \(y\left(-1\right)=40\) ; \(y\left(3\right)=8\) ; \(y\left(4\right)=15\)

\(\Rightarrow y_{min}=-41\) ; \(y_{max}=40\)

b. Trên [0;5] ta có:

\(y\left(0\right)=35\) ; \(y\left(3\right)=8\)\(y\left(5\right)=40\)

\(\Rightarrow y_{max}=40\) ; \(y_{min}=8\)

27 tháng 1 2015

+) y' = 3x2 -6x -9

+) y' = 0 => 3x2 -6x -9 = 0 <=> x= -1 ; x = 3

+BBT:

  x y' y -4 4 -1 3 0 0 - + + -71 40 8 15

Từ bảng biến thiên suy ra max y = 40 tại x = -1, min y = -71 tại x = -4

b) BBT:

x y' y -1 3 0 0 - + 8 0 5 35 40

Từ bảng biến thiên suy ra max y = 40 tại  x = 5; min y = 8 tại x = 3

7 tháng 1 2018

oh

4 tháng 10 2019

Từ đó

Sử dụng MTCT ta tìm được max P = 2 .

 

Chọn A.

31 tháng 10 2016

a) \(3x^2-9x+5=3\left(x-\frac{3}{2}\right)^2-\frac{7}{4}\ge-\frac{7}{4}\)

Dấu "=" xảy ra khi x = 3/2

Vậy BT đạt giá trị nhỏ nhất bằng -7/4 khi x = 3/2

b/ \(x^2+y^2+x-y-1=\left(x^2+x+\frac{1}{4}\right)+\left(y^2-y+\frac{1}{4}\right)-\frac{3}{2}=\left(x+\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2-\frac{3}{2}\ge-\frac{3}{2}\)

Dấu "=" xảy ra khi \(\begin{cases}x=-\frac{1}{2}\\y=\frac{1}{2}\end{cases}\)

Vậy BT đạt giá trị nhỏ nhất bằng -3/2 khi (x;y) = (-1/2;1/2)

c/ \(2x^2+2x+1=2\left(x+\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\)

Dấu "=" xảy ra khi x = -1/2

Vậy BT đạt giá trị nhỏ nhất bằng 1/2 khi x = -1/2

31 tháng 10 2016

câu hỏi hay v~

Bài 1: 

a) Ta có: \(A=-x^2-4x-2\)

\(=-\left(x^2+4x+2\right)\)

\(=-\left(x^2+4x+4-2\right)\)

\(=-\left(x+2\right)^2+2\le2\forall x\)

Dấu '=' xảy ra khi x=-2

b) Ta có: \(B=-2x^2-3x+5\)

\(=-2\left(x^2+\dfrac{3}{2}x-\dfrac{5}{2}\right)\)

\(=-2\left(x^2+2\cdot x\cdot\dfrac{3}{4}+\dfrac{9}{16}-\dfrac{49}{16}\right)\)

\(=-2\left(x+\dfrac{3}{4}\right)^2+\dfrac{49}{8}\le\dfrac{49}{8}\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{3}{4}\)

c) Ta có: \(C=\left(2-x\right)\left(x+4\right)\)

\(=2x+8-x^2-4x\)

\(=-x^2-2x+8\)

\(=-\left(x^2+2x-8\right)\)

\(=-\left(x^2+2x+1-9\right)\)

\(=-\left(x+1\right)^2+9\le9\forall x\)

Dấu '=' xảy ra khi x=-1

Bài 2: 
a) Ta có: \(=25x^2-20x+7\)

\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)

\(=\left(5x-2\right)^2+3>0\forall x\)

b) Ta có: \(B=9x^2-6xy+2y^2+1\)

\(=9x^2-6xy+y^2+y^2+1\)

\(=\left(3x-y\right)^2+y^2+1>0\forall x,y\)

c) Ta có: \(E=x^2-2x+y^2-4y+6\)

\(=x^2-2x+1+y^2-4y+4+1\)

\(=\left(x-1\right)^2+\left(y-2\right)^2+1>0\forall x,y\)