tìm điểm sao cho các đường thẳng luôn đi qua với mọi M:
1) y=mx-3-x
2) y=m(x+2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Thay x=-2 và y=1 vào y=mx+2m+1, ta được:
\(m\cdot\left(-2\right)+2m+1=1\)
=>2m-2m+1=1
=>1=1(luôn đúng)
Vậy: Đường thẳng y=mx+2m+1 luôn đi qua A(-2;1)
b: Thay x=-1 và y=1 vào y=(m-1)x+m, ta được:
\(\left(-1\right)\left(m-1\right)+m=1\)
=>-m+1+m=1
=>1=1(đúng)
vậy: Đường thẳng y=(m-1)x+m luôn đi qua B(-1;1)
\(a,d//d_1\Leftrightarrow\left\{{}\begin{matrix}m+2=-2\\m\ne3\end{matrix}\right.\Leftrightarrow m=-4\\ b,d\perp d_2\Leftrightarrow\dfrac{1}{3}\left(m+2\right)=-1\Leftrightarrow m+2=-3\Leftrightarrow m=-5\\ c,d.qua.N\left(1;3\right)\Leftrightarrow x=1;y=3\Leftrightarrow3=m+2+m\\ \Leftrightarrow2m=1\Leftrightarrow m=\dfrac{1}{2}\)