Giải các phương trình:
\(\left(x+1\right)^4\)+\(\left(x-3\right)^4\)=82
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(t=x-4\)
\(\Rightarrow\left(t+2\right)^4+\left(t-2\right)^4=82\)
\(\Leftrightarrow t^4+24t^2-25=0\Rightarrow\left[{}\begin{matrix}t^2=1\\t^2=-25\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow\left(x-4\right)^2=1\Rightarrow\left[{}\begin{matrix}x=5\\x=3\end{matrix}\right.\)
Thật ra đặt cũng được, mà mình lười quá thì đành phanh toạch hết ra đi:vv
Ta có: \(\left(x-2\right)^4+\left(x-6\right)^4=82\)
\(\Leftrightarrow x^4-8x^3+24x^2-32x+16+x^4-24x^3+216x^2-864x+1296-82=0\)
<=> \(2x^4-32x^3+240x^2-896x+1230=0\)
<=> \(2\left(x-5\right)\left(x-3\right)\left(x^2-8x+41\right)=0\)
Vì \(x^2-8x+41\ne0\)
=> \(\left[{}\begin{matrix}x-3=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=5\end{matrix}\right.\)
Vậy tập nghiệm của pt là: S={3;5}
Những bài như thế này thì em chỉ cần nhớ hai điều:
+)Thứ nhất: \(\left(a+b\right)^4=a^4+4a^3b+6a^2b^2+4ab^3+a^4\)
+) Thứ hai : \(\left(-\frac{1}{2}+\frac{3}{2}\right):2=\frac{1}{2}\)
Giải:
Đặt : x = \(t-\frac{1}{2}\)
Ta có pt: \(\left(t-1\right)^4+\left(t+1\right)^4=82\)
<=> \(\left(t^4-4t^3+6t^2-4t+1\right)+\left(t^4+4t^3+6t^2+4t+1\right)=82\)
<=> \(2t^4+12t^2+2=82\)
<=> \(t^4+6t^2-40=0\)
<=> \(t^4+2.t^2.3+9=49\)
<=> \(\left(t^2+3\right)^2=7^2\)
<=> \(\orbr{\begin{cases}t^2+3=7\\t^2+3=-7\left(loai\right)\end{cases}}\)
<=> \(t^2=4\)
<=> \(t=\pm2\)
Với t = 2 ta có: \(x=2-\frac{1}{2}=\frac{3}{2}\)
Với t = -2 ta có: \(x=-2-\frac{1}{2}=-\frac{5}{2}\)
Vậy:
#Cô chi oi hình như phải đặt
\(x=t+\frac{1}{2}\)mới ra được như này \(\left(t-1\right)\left(t+1\right)\) chứ cô
Bạn lớp 9 rồi nên mk chỉ gợi ý thôi
Đặt \(a=x^2+3x+2\)
Phương trình đã cho trở thành\(\left(a-1\right)^4+\left(a+1\right)^4=82\)
\(a,4\left(x-3\right)^2-\left(2x-1\right)^2\ge12\)
\(\Leftrightarrow4x^2-24x+36-4x^2-4x+1\ge12\)
\(\Leftrightarrow-28x+37\ge12\)
\(\Leftrightarrow-28x\ge12-37\)
\(\Leftrightarrow-28x\ge-25\)
\(\Leftrightarrow x\le\dfrac{25}{28}\)
Vậy \(S=\left\{x\left|x\le\dfrac{25}{28}\right|\right\}\)
b, \(\left(x-4\right)\left(x+4\right)\ge\left(x+3\right)^2+5\)
\(\Leftrightarrow x^2-16\ge x^2+6x+9+5\)
\(\Leftrightarrow x^2-x^2-6x\ge9+5+16\)
\(\Leftrightarrow-6x\ge30\)
\(\Leftrightarrow x\le-5\)
Vậy \(S=\left\{x\left|x\le-5\right|\right\}\)
\(c,\left(3x-1\right)^2-9\left(x+2\right)\left(x-2\right)< 5x\)
\(\Leftrightarrow9x^2-6x-1-9x^2+36< 5x\)
\(\Leftrightarrow9x^2-9x^2-6x-5x+36+1< 0\)
\(\Leftrightarrow-11x+37< 0\)
\(\Leftrightarrow-11x< -37\)
\(\Leftrightarrow x>\dfrac{37}{11}\)
vậy \(S=\left\{x\left|x>\dfrac{37}{11}\right|\right\}\)
Ta có :
\(\left(x-1\right)^4+\left(5-x\right)^4=1^4+3^4\)
\(\Rightarrow\hept{\begin{cases}x-1=2\\5-x=3\end{cases}}\)hoặc\(\Rightarrow\hept{\begin{cases}x-1=3\\5-x=1\end{cases}}\)
\(\Rightarrow x=2\)hoặc\(\Rightarrow x=4\)
Vậy, \(\orbr{\begin{cases}x=4\\x=2\end{cases}}\)
\(\left(x-1\right)^4+\left(5-x\right)^4=82\)
\(\Leftrightarrow\left(x-1\right)^4+\left(x-5\right)^4=82\)
Đặt \(x-3=y\Rightarrow x=y+3\)
Thay \(x=y+3\)vào phương trình. Ta có:
\(\left(y+2\right)^4+\left(y-2\right)^4=82\)
\(\Leftrightarrow y^4+8y^3+24y^2+32y+16+y^4-8y^3+24y^2-32y+16=82\)
\(\Leftrightarrow2y^4+48y^2+32=82\)
\(\Leftrightarrow2y^4+48y^2+32-82=0\)
\(\Leftrightarrow2y^4+48y^2-50=0\)
\(\Leftrightarrow2\left(y^2-1\right)\left(y^2+25\right)=0\)
\(\Leftrightarrow2\left(y-1\right)\left(y+1\right)\left(y^2+25\right)=0\)
\(\orbr{\begin{cases}\orbr{\begin{cases}y-1=0\\y+1=0\end{cases}}\\y^2+25=0\left(y^2+25\ge25>0\right)\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=1\\y=-1\end{cases}}\)\(\Rightarrow y=1\)hoặc \(y=-1\)
Nếu \(y=1\Rightarrow x=4\)
Nếu\(y=-1\Rightarrow x=2\)
Vậy x=4 hoặc x=2
f. 5 – (x – 6) = 4(3 – 2x)
<=>5-x+6=12-8x
<=>7x=1
<=>x=\(\dfrac{1}{7}\)
g. 7 – (2x + 4) = – (x + 4)
<=>7-2x-4=-x-4
<=>x=7
h. 2x(x+2)\(^2\)−8x\(^2\)=2(x−2)(x\(^2\)+2x+4)
<=>\(2x\left(x^2+4x+4\right)-8x^2=2\left(x^3-8\right)\)
<=>\(2x^3+8x^2+8x-8x^2=2\left(x^3-8\right)\)
<=>\(2x^3+8x=2x^3-16\)
<=>\(8x=-16\)
<=>\(x=-2\)
i. (x−2\(^3\))+(3x−1)(3x+1)=(x+1)\(^3\)
<=>\(x-8+9x^2-1=x^3+3x^2+3x+1\)
<=>\(6x^2-2x-10=0\)
<=>\(3x^2-x-5=0\)
<=>\(\left[{}\begin{matrix}x=\dfrac{1+\sqrt{61}}{6}\\x=\dfrac{1-\sqrt{61}}{6}\end{matrix}\right.\)
k. (x + 1)(2x – 3) = (2x – 1)(x + 5)
<=>\(2x^2-x-3=2x^2+9x-5\)
<=>10x=2
<=>\(x=\dfrac{1}{5}\)
f. 5 – (x – 6) = 4(3 – 2x)
<=>5-x+6=12-8x
<=>7x=1
<=>x=\(\dfrac{1}{7}\)
g. 7 – (2x + 4) = – (x + 4)
<=>7-2x-4=-x-4
<=>x=7
h. \(2x\left(x+2\right)^2-8x^2=2\left(x-2\right)\left(x^2+2x+4\right)\)
<=>\(2x\left(x^2+4x+4\right)-8x^2=2\left(x^3-8\right)\)
<=>\(2x^3+8x^2+8x-8x^2=2x^3-16\)
<=>\(8x=-16\)
<=>x=-2
i.\(\left(x-2\right)^3+\left(3x-1\right)\left(3x+1\right)=\left(x+1\right)^3\)
<=>\(x^3-6x^2+12x+8+9x^2-1=x^3+3x^2+3x+1\)
<=>\(9x+6=0\)
<=>x=\(\dfrac{-2}{3}\)
k. (x + 1)(2x – 3) = (2x – 1)(x + 5)
<=>\(2x^2-x-3=2x^2+9x-5\)
<=>10x=2
<=>x=\(\dfrac{1}{5}\)
Bài 1: Giải các phương trình sau:
a) 3(2,2-0,3x)=2,6 + (0,1x-4)
<=> 6.6 - 0.9x = 2,6 + 0,1x - 4
<=> - 0.9x - 0,1x = -6.6 -1,4
<=> -x = -8
<=> x = 8
Vậy x = 8
b) 3,6 -0,5 (2x+1) = x - 0,25(22-4x)
<=> 3,6 - x - 0,5 = x - 5,5 + x
<=> - x - 3,1 = -5,5
<=> - x = -2.4
<=> x = 2.4
Vậy x = 2.4
( x + 1 )4 + ( x - 3 )4 = 82
Đặt t = x - 1
pt <=> ( t + 2 )4 + ( t - 2 )4 = 82
<=> t4 + 8t3 + 24t2 + 32t + 16 + t4 - 8t3 + 24t2 - 32t + 16 - 82 = 0
<=> 2t4 + 48t2 - 50 = 0
Đặt a = t2
<=> 2a2 + 48a - 50 = 0
<=> 2a2 - 2a + 50a - 50 = 0
<=> 2a( a - 1 ) + 50( a - 1 ) = 0
<=> ( a - 1 )( 2a + 50 ) = 0
<=> ( t2 - 1 )( 2t2 + 50 ) = 0
<=> ( t - 1 )( t + 1 )( 2t2 + 50 ) = 0
<=> ( x - 1 - 1 )( x - 1 + 1 )[ 2( x - 1 )2 + 50 ] = 0
<=> x( x - 2 )[ 2( x - 1 )2 + 50 ] = 0
Vì 2( x - 1 )2 + 50 ≥ 50 > 0 ∀ x
=> x( x - 2 ) = 0
<=> x = 0 hoặc x = 2
Vậy phương trình có hai nghiệm x = 0 hoặc x = 2
(x + 1)4 + (x - 3)4 = 82
=> (x + 1)4 + (3 - x)4 = 82
=> x4 + 4x3 + 6x2 + 4x + 1 + 81 + 108x - 54x2 - 12x3 + x4 = 82
=> 2x4 - 8x3 - 48x2 + 112x = 0
=> x4 - 4x3 - 24x2 + 56x = 0
=> x(x3 - 4x2 - 24x + 56) = 0
=> x(x3 - 4x2 + 4x - 28x + 56) = 0
=> x[x(x2 - 4x + 4) - 28(x - 2)] = 0
=> x[x(x - 2)2 - 28(x - 2)] = 0
=> x(x - 2)[x(x - 2) - 28] = 0
=> x(x - 2)(x2 - 2x - 28] = 0
=> x(x - 2)(x2 - 2x + 1 - 29) = 0
=> x(x - 2)[(x - 1)2 - 29] = 0
=> \(x\left(x-2\right)\left(x-1+\sqrt{29}\right)\left(x-1-\sqrt{29}\right)=0\)= 0
=> x = 0 hoặc x - 2 = 0 hoặc x - 1 + \(\sqrt{29}\)= 0 hoặc x - 1 - \(\sqrt{29}\) = 0
=> x = 0 hoặc x = 2 hoặc x = - \(\sqrt{29}\)+ 1 hoặc x = \(\sqrt{29}\)+ 1