K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 1 2021

Áp dụng BĐT BSC và Cosi:

\(\dfrac{1}{a^2+b^2}+\dfrac{2}{ab}+4ab=\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}+\dfrac{1}{4ab}+4ab+\dfrac{5}{4ab}\)

\(\ge\dfrac{4}{a^2+b^2+2ab}+2\sqrt{\dfrac{1}{4ab}.4ab}+\dfrac{5}{\left(a+b\right)^2}\)

\(=\dfrac{4}{\left(a+b\right)^2}+2+\dfrac{5}{\left(a+b\right)^2}\ge4+2+5=11\)

\(min=11\Leftrightarrow a=b=\dfrac{1}{2}\)

19 tháng 1 2021

Like + share công khai giúp t với

Facebook

21 tháng 4 2018

Đầu tiên ta chứng minh bđt:\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)

\(\Leftrightarrow\dfrac{a+b}{ab}\ge\dfrac{4}{a+b}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)(luôn đúng)

Áp dụng \(\Rightarrow P=\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}\ge\dfrac{4}{a^2+b^2+2ab}=\dfrac{4}{\left(a+b\right)^2}\ge\dfrac{4}{4^2}=\dfrac{1}{4}\)

\(\Rightarrow MINP=\dfrac{1}{4}\Leftrightarrow a=b=2\)

2 tháng 12 2021

Câu 1

\(a+b\ge2\sqrt{ab}\Leftrightarrow ab\le\dfrac{\left(a+b\right)^2}{4}\\ \Leftrightarrow N=ab+\dfrac{1}{16ab}+\dfrac{15}{16ab}\ge2\sqrt{\dfrac{1}{16}}+\dfrac{15}{4\left(a+b\right)^2}\ge\dfrac{1}{2}+\dfrac{15}{4}=\dfrac{17}{4}\)

Dấu \("="\Leftrightarrow a=b=\dfrac{1}{2}\)

Câu 2:

\(P=a+\dfrac{1}{a}+2b+\dfrac{8}{b}+3c+\dfrac{27}{c}+4\left(a+b+c\right)\\ P\ge2\sqrt{1}+2\sqrt{16}+2\sqrt{81}+4\cdot6=2+8+18+4=32\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\\c=3\end{matrix}\right.\)

Câu 3: Cho a,b,c là các số thuộc đoạn [ -1;2 ] thõa mãn \(a^2+b^2+c^2=6.\) CMR : \(a+b+c>0\) - Hoc24

11 tháng 12 2018

\(A=\dfrac{2}{a^2+b^2}+\dfrac{35}{ab}+2ab\\ =\dfrac{2}{a^2+b^2}+\dfrac{2}{2ab}+\dfrac{34}{ab}+\dfrac{17ab}{8}-\dfrac{ab}{8}\\ =2\left(\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}\right)+17\left(\dfrac{2}{ab}+\dfrac{ab}{8}\right)-\dfrac{ab}{8}\\ \overset{AM-GM}{\ge}2\cdot\dfrac{1}{a^2+b^2+2ab}+17\sqrt{\dfrac{2}{ab}\cdot\dfrac{ab}{8}}-\dfrac{\left(a+b\right)^2}{4\cdot8}\\ =\dfrac{2}{\left(a+b\right)^2}+\dfrac{17}{2}-\dfrac{\left(a+b\right)^2}{32}\\ \ge\dfrac{2}{4^2}+\dfrac{17}{2}-\dfrac{4^2}{32}=\dfrac{65}{8}\)

Dấu "=" xảy ra khi : \(\left\{{}\begin{matrix}\dfrac{2}{ab}=\dfrac{ab}{8}\\a^2+b^2=2ab\\a=b\\a+b=4\end{matrix}\right.\Leftrightarrow a=b=2\)

Vậy \(A_{Min}=\dfrac{65}{8}\) khi \(a=b=2\)

11 tháng 12 2018

Không có vÄn bản thay thế tá»± Äá»ng nà o.\(\ge2\cdot\dfrac{4}{a^2+b^2+2ab}+17\cdot2\sqrt{\dfrac{2}{ab}+\dfrac{ab}{8}}-\dfrac{\left(a+b\right)^2}{4\cdot8}\\ =\dfrac{8}{\left(a+b\right)^2}+17-\dfrac{\left(a+b\right)^2}{32}\\ \ge\dfrac{8}{4^2}+17-\dfrac{4^2}{32}=17\)

Không có vÄn bản thay thế tá»± Äá»ng nà o.Vậy \(A_{Min}=17\) khi \(a=b=c=2\)

9 tháng 4 2017

Áp dụng BĐT AM-GM ta có:

\(a+b\ge2\sqrt{ab}\Rightarrow1\ge2\sqrt{ab}\Rightarrow\dfrac{1}{2}\ge\sqrt{ab}\Rightarrow\dfrac{1}{4}\ge ab\)

Lại có theo AM-GM ta có:

\(a^2+b^2\ge2\sqrt{a^2b^2}=2ab\)\(\Rightarrow\dfrac{3}{a^2+b^2}\ge\dfrac{3}{2ab}\)

\(\Rightarrow A\ge\dfrac{3}{2ab}+\dfrac{2}{ab}\ge\dfrac{3}{2\cdot\dfrac{1}{4}}+\dfrac{2}{\dfrac{1}{4}}=14\)

Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}a+b=2\sqrt{ab}\\a+b=1\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}a=b\\a+b=1\end{matrix}\right.\)\(\Rightarrow a=b=\dfrac{1}{2}\)

Vậy \(A_{Min}=14\) khi \(a=b=\dfrac{1}{2}\)

9 tháng 4 2017

\(A=\dfrac{3}{a^2+b^2}+\dfrac{3}{2ab}+\dfrac{1}{2ab}\ge\dfrac{12}{\left(a+b\right)^2}+\dfrac{2}{\left(a+b\right)^2}=14\)

28 tháng 5 2018

2,

ÁP dụng bđt phụ \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}\)(Tự cm) ta có

\(B\ge\dfrac{1}{a^2+b^2+c^2}+\dfrac{9}{ab+bc+ac}=\dfrac{1}{a^2+b^2+c^2}+\dfrac{4}{2\left(ab+bc+ac\right)}+\dfrac{7}{ab+bc+ac}\)

Tiếp tục sử dụng bđt \(\dfrac{a^2}{x}+\dfrac{b^2}{y}\ge\dfrac{\left(a+b\right)^2}{x+y}\)

\(\Rightarrow B\ge\dfrac{\left(1+2\right)^2}{\left(a+b+c\right)^2}+\dfrac{7}{ab+bc+ac}=9+\dfrac{7}{ab+bc+ac}\)

SD bđt phụ \(a^2+b^2+c^2\ge ab+bc+ac\)

\(\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)

\(\Rightarrow ab+bc+ac\le\dfrac{1}{3}\)

\(\Rightarrow\dfrac{7}{ab+bc+ac}\ge21\)

Do đo \(B\ge21+9=30\)

Dấu bằng xảy ra khi \(a=b=c=\dfrac{1}{3}\)

28 tháng 5 2018

Bài 1 SD cái bđt \(\dfrac{a^2}{x}+\dfrac{b^2}{y}+\dfrac{c^2}{z}+\dfrac{d^2}{t}\ge\dfrac{\left(a+b+c+d\right)^2}{x+y+z+t}\)

Phương pháp : nhân các phân thức lần lượt vs tử của nó để xuất hiện bình phương biến đổi mẫu sao cho xuất hiện a +b+c+d .

Ngại trình bày vì dài quá

7 tháng 3 2017

Ta có:

\(M=\dfrac{4ab}{a+2b}+\dfrac{9ac}{a+4c}+\dfrac{4bc}{b+c}\)

\(=\dfrac{4}{\dfrac{1}{b}+\dfrac{2}{a}}+\dfrac{9}{\dfrac{1}{c}+\dfrac{4}{a}}+\dfrac{4}{\dfrac{1}{c}+\dfrac{1}{b}}\)

\(\ge\dfrac{\left(2+3+2\right)^2}{\dfrac{1}{b}+\dfrac{2}{a}+\dfrac{1}{c}+\dfrac{4}{a}+\dfrac{1}{c}+\dfrac{1}{b}}=\dfrac{49}{\dfrac{2}{b}+\dfrac{6}{a}+\dfrac{2}{c}}=\dfrac{49}{\dfrac{2ab+6bc+2ac}{abc}}=\dfrac{49}{7}=7\)

Vậy GTNN là M = 7 khi \(\left(a,b,c\right)=\left(2,1,1\right)\)

24 tháng 11 2021

\(1,\) Áp dụng BĐT: \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\text{ và }\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)

Dấu \("="\Leftrightarrow x=y\)

\(A=\left(a+\dfrac{1}{a}\right)^2+\left(b+\dfrac{1}{b}\right)^2+17\ge\dfrac{1}{2}\left(a+b+\dfrac{1}{a}+\dfrac{1}{b}\right)^2+17\\ A\ge\dfrac{1}{2}\left(1+\dfrac{1}{a}+\dfrac{1}{b}\right)^2+17\ge\dfrac{1}{2}\left(1+\dfrac{4}{a+b}\right)^2+17=\dfrac{25}{2}+17=\dfrac{59}{2}\\ \text{Dấu }"="\Leftrightarrow\left\{{}\begin{matrix}a+\dfrac{1}{a}=b+\dfrac{1}{b}\\a+b=1\end{matrix}\right.\Leftrightarrow a=b=\dfrac{1}{2}\)

24 tháng 11 2021

\(2,\text{Đặt }A=\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{xz}{y}\\ \Leftrightarrow A^2=\dfrac{x^2y^2}{z^2}+\dfrac{y^2z^2}{x^2}+\dfrac{x^2z^2}{y^2}+2\left(\dfrac{xy^2z}{xz}+\dfrac{xyz^2}{xy}+\dfrac{x^2yz}{yz}\right)\\ \Leftrightarrow A^2=\dfrac{x^2y^2}{z^2}+\dfrac{y^2z^2}{x^2}+\dfrac{x^2z^2}{y^2}+2\left(x^2+y^2+z^2\right)\\ \Leftrightarrow A^2=\dfrac{x^2y^2}{z^2}+\dfrac{y^2z^2}{x^2}+\dfrac{x^2z^2}{y^2}+6\)

Áp dụng Cosi: \(\dfrac{x^2y^2}{z^2}+\dfrac{y^2z^2}{x^2}\ge2y^2\)

CMTT: \(\left\{{}\begin{matrix}\dfrac{y^2z^2}{x^2}+\dfrac{x^2z^2}{y^2}\ge2z^2\\\dfrac{x^2y^2}{z^2}+\dfrac{x^2z^2}{y^2}\ge2x^2\end{matrix}\right.\)

Cộng VTV \(\Leftrightarrow A^2\ge2\left(x^2+y^2+z^2\right)+6=12\\ \Leftrightarrow A\ge2\sqrt{3}\)

Dấu \("="\Leftrightarrow x=y=z=1\)