K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2021

giúp mình với ạ câu nào cũng được

18 tháng 4 2017

1.

\(\dfrac{7x-3}{x-1}=\dfrac{2}{3}\left(ĐKXĐ:x\ne1\right)\\ \Leftrightarrow3\left(7x-3\right)=2\left(x-1\right)\\ \Leftrightarrow21x-9=2x-2\\ \Leftrightarrow19x=7\\ \Leftrightarrow x=\dfrac{7}{19}\left(TMĐK\right)\)

2.

\(\dfrac{5x-1}{3x+2}=\dfrac{5x-7}{3x-1}\left(ĐKXĐ:x\ne-\dfrac{2}{3};x\ne\dfrac{1}{3}\right)\\ \Leftrightarrow\left(5x-1\right)\left(3x-1\right)=\left(5x-7\right)\left(3x+2\right)\\ \Leftrightarrow15x^2-5x-3x+1=15x^2+10x-21x-14\\ \Leftrightarrow-8x+1=-11x-14\\ \Leftrightarrow3x=-15\\ \Leftrightarrow x=-5\left(TMĐK\right)\)

3.

\(\dfrac{1-x}{x+1}+3=\dfrac{2x+3}{x+1}\left(ĐKXĐ:x\ne-1\right)\\ \Leftrightarrow\left(\dfrac{1-x}{x+1}+3\right)\left(x+1\right)=2x+3\\ \Leftrightarrow\dfrac{1-x+3\left(x+1\right)}{x+1}.\left(x+1\right)=2x+3\\ \Leftrightarrow\dfrac{4+2x}{x+1}\left(x+1\right)=2x+3\\ \Leftrightarrow4+2x=2x+3\\ \Leftrightarrow4=3\)

Vô nghiệm.

a) ĐKXĐ: \(x\ne3\)

Ta có: \(\dfrac{x^2-x-6}{x-3}=0\)

\(\Leftrightarrow\dfrac{\left(x+2\right)\left(x-3\right)}{x-3}=0\)

Suy ra: x+2=0

hay x=-2(thỏa ĐK)

Vậy: S={-2}

d)

ĐKXĐ: \(x\notin\left\{1;3\right\}\)

Ta có: \(\dfrac{x+5}{x-1}=\dfrac{x+1}{x-3}-\dfrac{8}{x^2-4x+3}\)

\(\Leftrightarrow\dfrac{\left(x+5\right)\left(x-3\right)}{\left(x-1\right)\left(x-3\right)}=\dfrac{\left(x+1\right)\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}-\dfrac{8}{\left(x-1\right)\left(x-3\right)}\)

Suy ra: \(x^2-3x+5x-15=x^2-1-8\)

\(\Leftrightarrow2x-15+9=0\)

\(\Leftrightarrow2x-6=0\)

hay x=3(loại)

Vậy: \(S=\varnothing\)

8 tháng 2 2022

ĐKXĐ: \(x\ne\pm3\)

\(P=\left[\dfrac{x\left(x+3\right)}{x^2\left(x+3\right)+9\left(x+3\right)}+\dfrac{3}{x^2+9}\right]:\left[\dfrac{1}{x-3}-\dfrac{6x}{x^2\left(x-3\right)+9\left(x-3\right)}\right]\)

\(=\left[\dfrac{x\left(x+3\right)}{\left(x+3\right)\left(x^2+9\right)}+\dfrac{3}{x^2+9}\right]:\left[\dfrac{1}{x-3}-\dfrac{6x}{\left(x-3\right)\left(x^2+9\right)}\right]\)

\(=\dfrac{x+3}{x^2+9}:\dfrac{x^2+9-6x}{\left(x-3\right)\left(x^2+9\right)}=\dfrac{x+3}{x^2+9}.\dfrac{\left(x-3\right)\left(x^2+9\right)}{\left(x-3\right)^2}=\dfrac{x+3}{x-3}\)

Ý 2 mình k hiểu ý bạn lắm

\(P=\dfrac{x+3}{x-3}=\dfrac{x-3+6}{x-3}=1+\dfrac{6}{x-3}\in Z\)

\(\Leftrightarrow\left(x-3\right)\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)

Kết hợp vs ĐKXĐ \(\Rightarrow x\in\left\{0;1;2;4;5;6;9\right\}\)

bài 2 giải các phương trình saub,\(\dfrac{2\left(3-7x\right)}{1+x}=\dfrac{1}{2}\)               m,\(\dfrac{3x-1}{x+1}=\dfrac{2x+1}{x-1}\)d,\(\dfrac{3x-14}{x+5}=\dfrac{2}{3}\)                   p,\(\dfrac{4x+7}{x-1}=\dfrac{12x+5}{3x+4}\)f,\(\dfrac{6}{x}-1=\dfrac{2x-3}{3}\)               r,\(\dfrac{1}{x+3}+\dfrac{1}{x-1}=\dfrac{10}{\left(x+3\right)\left(x-1\right)}\)h,\(\dfrac{1}{x-2}+3=\dfrac{x-3}{2-x}\)       ...
Đọc tiếp

bài 2 giải các phương trình sau

b,\(\dfrac{2\left(3-7x\right)}{1+x}=\dfrac{1}{2}\)               m,\(\dfrac{3x-1}{x+1}=\dfrac{2x+1}{x-1}\)

d,\(\dfrac{3x-14}{x+5}=\dfrac{2}{3}\)                   p,\(\dfrac{4x+7}{x-1}=\dfrac{12x+5}{3x+4}\)

f,\(\dfrac{6}{x}-1=\dfrac{2x-3}{3}\)               r,\(\dfrac{1}{x+3}+\dfrac{1}{x-1}=\dfrac{10}{\left(x+3\right)\left(x-1\right)}\)

h,\(\dfrac{1}{x-2}+3=\dfrac{x-3}{2-x}\)         t,\(\dfrac{3x}{x-2}-\dfrac{x}{x-5}=\dfrac{3x}{\left(x-2\right)\left(5-x\right)}\)

j,\(\dfrac{5}{3x+2}=2x-1\)              u,\(\dfrac{x+3}{x+1}+\dfrac{x-2}{x}=\dfrac{2\left(x^2+x-1\right)}{x\left(x+1\right)}\)

w,\(\dfrac{5x}{2x+2}+1=-\dfrac{6}{x+1}\)         s, \(\dfrac{6}{x-1}-\dfrac{4}{x-3}=\dfrac{2x}{\left(x-1\right)\left(x-3\right)}\)

ơ,\(\dfrac{1}{x-1}+\dfrac{2}{x+1}=\dfrac{x}{x^2-1}\)          v,\(\dfrac{x}{2\left(x-3\right)}+\dfrac{x}{2\left(x+1\right)}=\dfrac{2x}{\left(x+1\right)\left(x-3\right)}\)

z,\(\dfrac{1}{x-1}-\dfrac{3x^2}{x^3-1}=\dfrac{2x}{x^2+x+1}\)             ư,\(\dfrac{x+2}{x-2}-\dfrac{-2}{x^2-2x}=\dfrac{1}{x}\)

o,\(x+\dfrac{1}{x}=x^2+\dfrac{1}{x^2}\)          ô,\(1-\dfrac{1}{1-x}=\dfrac{x^2}{x^2-1}\)       zz,\(\dfrac{12}{8+x^3}=1+\dfrac{1}{x+2}\)

2
13 tháng 1 2023

Bạn chia nhỏ các phần ra nhé.

13 tháng 1 2023

uh mk biết lần sau mk rút kinh nghiệm

a) Ta có: \(\dfrac{x+5}{3x-6}-\dfrac{1}{2}=\dfrac{2x-3}{2x-4}\)

\(\Leftrightarrow\dfrac{2\left(x+5\right)}{6\left(x-2\right)}-\dfrac{3\left(x-2\right)}{6\left(x-2\right)}=\dfrac{3\left(2x-3\right)}{6\left(x-2\right)}\)

Suy ra: \(2x+5-3x+6=6x-9\)

\(\Leftrightarrow-x+11-6x+9=0\)

\(\Leftrightarrow20-7x=0\)

\(\Leftrightarrow7x=20\)

hay \(x=\dfrac{20}{7}\)(thỏa ĐK)

Vậy: \(S=\left\{\dfrac{20}{7}\right\}\)

5 tháng 2 2022

e) ĐK : \(\left\{{}\begin{matrix}1+3x\ne0\\1-3x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x\ne-1\\3x\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{-1}{3}\\x\ne\dfrac{1}{3}\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{12}{\left(1-3x\right)\left(1+3x\right)}=\dfrac{\left(1-3x\right)^2-\left(1+3x\right)^2}{\left(1+3x\right)\left(1-3x\right)}\)

\(\Leftrightarrow12\left(1+3x\right)\left(1-3x\right)=\left(1-3x\right)\left(1+3x\right)\left(1-3x-1-3x\right)\left(1-3x+1+3x\right)\)

\(\Leftrightarrow12=\left(-6x\right).2\Leftrightarrow6=-6x\)

\(\Leftrightarrow x=-1\left(TM\right)\)

23 tháng 2 2019

Câu 1:

Hỏi đáp Toán

23 tháng 2 2019

Câu 2:

ĐKXĐ: \(\left[{}\begin{matrix}1-9x^2\ne0\\1+3x\ne0\\1-3x\ne0\end{matrix}\right.\Rightarrow \left[{}\begin{matrix}x\ne\dfrac{-1}{3}\\x\ne\dfrac{1}{3}\end{matrix}\right.\)

\(\dfrac{12}{1-9x^2}=\dfrac{1-3x}{1+3x}-\dfrac{1+3x}{1-3x}\left(1\right)\)

\(\left(1\right):\dfrac{12}{\left(1-3x\right)\left(1+3x\right)}-\dfrac{\left(1-3x\right)\left(1-3x\right)}{\left(1-3x\right)\left(1+3x\right)}+\dfrac{\left(1+3x\right)\left(1+3x\right)}{\left(1-3x\right)\left(1+3x\right)}=0\)

\(\Leftrightarrow 12-\left(1-3x-3x+9x^2\right)+\left(1+3x+3x+9x^2\right)=0\)

\(\Leftrightarrow 12-1+3x+3x-9x^2+1+3x+3x+9x^2=0\)

\(\Leftrightarrow12x+12=0\\ \Leftrightarrow12x=-12\\ \Leftrightarrow x=-1\left(TM\right)\)

Vậy \(S=\left\{-1\right\}\)

1) ĐKXĐ: \(x\notin\left\{2;-2\right\}\)

Ta có: \(\dfrac{1-6x}{x-2}+\dfrac{9x+4}{x+2}=\dfrac{x\left(3x-2\right)+1}{x^2-4}\)

\(\Leftrightarrow\dfrac{\left(1-6x\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{\left(9x+4\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{3x^2-2x+1}{\left(x-2\right)\left(x+2\right)}\)

Suy ra: \(\left(1-6x\right)\left(x+2\right)+\left(9x+4\right)\left(x-2\right)=3x^2-2x+1\)

\(\Leftrightarrow x+2-6x^2-12x+9x^2-18x+4x-8-3x^2+2x-1=0\)

\(\Leftrightarrow-23x-7=0\)

\(\Leftrightarrow-23x=7\)

\(\Leftrightarrow x=-\dfrac{7}{23}\)(nhận)

Vậy: \(S=\left\{-\dfrac{7}{23}\right\}\)

2) ĐKXĐ: \(x\notin\left\{\dfrac{2}{3};-\dfrac{2}{3}\right\}\)

Ta có: \(\dfrac{3x+2}{3x-2}-\dfrac{6}{2-3x}=\dfrac{9x^2}{9x^2-4}\)

\(\Leftrightarrow\dfrac{3x+2}{3x-2}+\dfrac{6}{3x-2}=\dfrac{9x^2}{\left(3x-2\right)\left(3x+2\right)}\)

\(\Leftrightarrow\dfrac{3x+8}{3x-2}=\dfrac{9x^2}{\left(3x-2\right)\left(3x+2\right)}\)

\(\Leftrightarrow\dfrac{\left(3x+8\right)\left(3x+2\right)}{\left(3x-2\right)\left(3x+2\right)}=\dfrac{9x^2}{\left(3x-2\right)\left(3x+2\right)}\)

Suy ra: \(9x^2+6x+24x+16=9x^2\)

\(\Leftrightarrow30x+16=0\)

\(\Leftrightarrow30x=-16\)

hay \(x=-\dfrac{8}{15}\)(nhận)

Vậy: \(S=\left\{-\dfrac{8}{15}\right\}\)