K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 1 2021

Kẻ tiếp tuyến tại A. Gọi E là giao điểm của tiếp tuyến tại A với dây BC.

Ta có: EM=EA và \(\widehat{EAM}=\widehat{EMA}\)( tính chất 2 tiếp tuyến cắt nhau)

hay \(\widehat{EAB}+\widehat{BAM}=\widehat{ECA}+\widehat{CAM}\)

Mà \(\widehat{EAB}=\widehat{ECA}\)

=> \(\widehat{BAM}=\widehat{CAM}\) hay AM là phân giác góc BAC( đpcm)

15 tháng 2 2021

Tam giác ABD nội tiếp trong đường tròn (O) có AB là đường kính nên vuông tại D

Suy ra: AD ⊥ BD

Tứ giác BDCE là hình thoi nên EC // BD

Suy ra: EC ⊥ AD     (1)

Tam giác AIC nội tiếp trong đường tròn (O’) có AC là đường kính nên vuông tại I

Suy ra: AI ⊥ CE     (2)

Từ (1) và (2) suy ra AD trùng với AI

Vậy D, A, I thẳng hàng.

ΔKBO=ΔKCO

=>KB=KC

=>KO là trung trực của BC

ΔKCO đồng dạng với ΔCIO

=>OC/OI=OK/OC

=>OC^2=OI*OK

=>OI*OK=ON^2

=>OI/ON=ON/OK

=>ΔOIN đồng dạng với ΔONK

=>gócc ONI=góc OKN

Tương tự, ta có: OI/OM=OM/OK

=>ΔMKO đồng dạng với ΔIMO

=>góc MKO=góc IMO=góc INO

=>góc MKD=góc NKD

=>K,M,N thẳng hàng

=>K luôn thuộc MN

Xét tứ giác MAOB có \(\widehat{OAM}+\widehat{OBM}=180^0\)

nên MAOB là tứ giác nội tiếp

28 tháng 1 2023

loading... loading...  

  Bạn tham khảo cách làm này của mình nhé

28 tháng 1 2023

Cái này trên quanda mà em

a) Sửa đề: 5 điểm A,B,D,F,E cùng thuộc một đường tròn

Xét tứ giác ABFE có

\(\widehat{AFB}=\widehat{AEB}\left(=90^0\right)\)

\(\widehat{AFB}\) và \(\widehat{AEB}\) là hai góc cùng nhìn cạnh AB

Do đó: ABFE là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Suy ra: A,B,F,E cùng thuộc 1 đường tròn(1)

Xét tứ giác ABDE có 

\(\widehat{ADB}=\widehat{AEB}\left(=90^0\right)\)

\(\widehat{ADB}\) và \(\widehat{AEB}\) là hai góc cùng nhìn cạnh AB

Do đó: ABDE là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Suy ra: A,B,D,E cùng thuộc 1 đường tròn(2)

Từ (1) và (2) suy ra A,B,D,F,E cùng thuộc 1 đường tròn(đpcm)

Tâm I của đường tròn này là trung điểm của AB

22 tháng 3 2022

Ta có hình vẽ sau:

O M A B C D E N