Tìm x,y nguyên thoả mãn (x+y)4+x4+y4=3996
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


1) Giả sử: \(9x+5=n\left(n+1\right)\left(n\in Z\right)\)
\(36x+20-4n^2+4n\)
\(\Rightarrow36x+21=4n^2+4n+1\)
\(\Rightarrow3\left(12x+7\right)=\left(2n+1\right)^2\)
\(\left(2n+1\right)^2\)là số chính phương nên sẽ chia hết cho 3 => (2n+1)2 chia hết cho 9
Lại có: 12x+7 ko chia hết cho 3 => 3(12x+7) ko chia hết cho 9
Chứng tỏ không tồn tại số nguyên x nào để 9x+5=n(n+1)

\(\dfrac{-3}{4}=\dfrac{x}{20}\Rightarrow x=\dfrac{-3}{4}.20\Rightarrow x=-15\)
\(-\dfrac{3}{4}=\dfrac{21}{y}\Rightarrow y=21:\left(-\dfrac{3}{4}\right)\Rightarrow y=-28\)
\(\dfrac{-3}{4}\)=\(\dfrac{X}{20}\)⇒x=\(\dfrac{-3}{4}\).20⇒x=\(-15\)
\(\dfrac{-3}{4}\)=\(\dfrac{21}{y}\)⇒y=21:\(\left(-\dfrac{3}{4}\right)\)⇒\(y\)=\(-28\)


a/ Ta có VP là số lẻ nên VT cũng phải là số lẻ. Hay trong 2 số x, y phải có 1 số lẻ.
Giả sử số lẻ đó là x thì ta có
\(\hept{\begin{cases}x=2m+1\\y=2n\end{cases}}\)
\(\Rightarrow\left(2m+1\right)^2+\left(2n\right)^2=1999\)
\(\Leftrightarrow4\left(m^2+m+n\right)=1998\)
Ta thấy VT chia hết chi 4 còn VP không chia hết cho 4 nên phương trình vô nghiệm
b/ \(9x^2+2=y^2+y\)
\(\Leftrightarrow36x^2+8=4y^2+4y\)
\(\Leftrightarrow\left(2y+1\right)^2-36x^2=9\)
\(\Leftrightarrow\left(2y+1-6x\right)\left(2y+1+6x\right)=9\)

x(y+3) + y= 4
<=> x(y+3) +(y+3) = 7
<=> (x+1)(y+3)=7
vì x,y thuộc Z => tự làm tiếp

\(xy-\left(x+2y\right)=3\)
\(xy-x-2y=3\)
\(y\left(x-2\right)-x=3\)
\(y\left(x-2\right)-x+2=3+2\)
\(y\left(x-2\right)-\left(x-2\right)=5\)
\(\left(y-1\right)\left(x-2\right)=5\)
Ta có bảng sau:
\(y-1\) | \(1\) | \(5\) | \(-1\) | \(-5\) |
\(x-2\) | \(5\) | \(1\) | \(-5\) | \(-1\) |
\(y\) | \(2\) | \(6\) | \(0\) | \(-4\) |
\(x\) | \(7\) | \(3\) | \(-3\) | \(1\) |
Vậy các cặp \(\left(x;y\right)\) là \(\left(7;2\right);\left(3;6\right);\left(-3;0\right);\left(1;-4\right)\)
=>xy-x-2y=3
=>x(y-1)-2y+2=5
=>(x-2)(y-1)=5
=>\(\left(x-2;y-1\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(3;6\right);\left(7;3\right);\left(1;-4\right);\left(-3;0\right)\right\}\)

x, y nguyên thì |x+4| và |y-2| cũng là số nguyên.
+) vì |x+4| và |y-2| luôn lớn hơn hoặc bằng 0 nên để thỏa mãn bài toán thì chỉ xảy ra các trường hợp sau
+) TH1: |x+4| = 3 và |y-2| = 0 <=> x = -1 hoặc x = -7
và y = 2.
ta có các cặp (x,y): (-1;2) , (-7; 2)
+) TH2: |x+4| = 2 và |y-2| = 1 <=> x = -2 hoặc x = -6 và y = 3 hoặc y = 1
ta có các cặp (x,y): (-2;1) , (-2; 3) , (-6;1) , (-6;3)
+) TH3: |x+4| = 1 và |y-2| = 2 <=> x = -3 hoặc x = -5 và y = 4 hoặc y = 0
ta có các cặp (x,y): (-3;4) , (-3; 0) ; (-5; 0) ; (-5;4)
+) TH4: |x+4| = 0 và |y-2| = 3 <=> x = -4 và y = -1 hoặc y = 5
ta có các cặp (x,y): (-4;-1) , (-4; 5)
Vậy có các cặp (x;y) thỏa mãn điều kiện là:(-1;2) , (-7; 2), (-2;1) , (-2; 3) , (-6;1) , (-6;3), (-3;4) , (-3; 0) ; (-5; 0) ; (-5;4), (-4;-1) , (-4; 5)
Xét 1 số có dạng \(a^4\) chia 16 có 2 khả năng dư 0 hoặc 1
Khi đó ta sẽ có: \(\hept{\begin{cases}\left(x+y\right)^4\equiv0,1\left(mod16\right)\\x^4\equiv0,1\left(mod16\right)\\y^4\equiv0,1\left(mod16\right)\end{cases}}\)
\(\Rightarrow\left(x+y\right)^4+x^4+y^4\equiv0,1,2,3\left(mod16\right)\)
Mà \(3996\equiv12\left(mod16\right)\)
=> Vô lý => PT vô nghiệm
Vậy phương trình không có nghiệm nguyên