D=(1+2/2)+(1+2/6)+...+(1+2/9900)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có:
\(D=\left(1+1+...+1\right)+2\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{99\cdot100}\right)\)
\(D=99+2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(D=99+2\left(1-\frac{1}{100}\right)\)
\(D=99+2\cdot\frac{99}{100}=99+\frac{99}{50}=\frac{5049}{50}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
D=\(1-\frac{1}{2}+1-\frac{1}{6}+1-\frac{1}{12}+........+1-\frac{1}{9900}\)
\(=1-\frac{1}{1.2}+1-\frac{1}{2.3}+........+1-\frac{1}{99.100}\)
\(=99-\left(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{99.100}\right)\)
\(=99-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{99}-\frac{1}{100}\right)\)
\(=99-\left(1-\frac{1}{100}\right)=98+\frac{1}{100}=\frac{9801}{100}\)
d=1/1.2+5/2.3+11/3.4+...+9899/99.100
=>d=1-1/2+1/2-1/3+...+1/99-1/100
=>d=1-1/100
=>d=99/100
Vậy d=99/100
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(1-\frac{2}{6}\right)\left(1-\frac{2}{12}\right)...\left(1-\frac{2}{9900}\right)\)
\(=\frac{4}{6}.\frac{10}{12}...\frac{9898}{9900}\)
\(=\frac{1.4}{2.3}.\frac{2.5}{3.4}...\frac{98.101}{99.100}\)
\(=\frac{1.2...98}{3.4...100}.\frac{4.5...101}{2.3...99}\)
\(=\frac{2}{99.100}.\frac{100.101}{2.3}\)
\(=\frac{101}{99.3}\)
\(=\frac{101}{297}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)E=1+3+6+...+4950
2E=1.2+3.2+6.2+...+4950.2
2E=2+6+12+...+9900
Ta có: Xét D=1.2+3.2+6.2+...+4950.2
3D=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100
3D=99.100.101
D=333300
Thay D vào E ta được 2E=333300 => E=166650
b)B=1+3+6+12+...+9900
2B=1.2+3.2+6.2+12.2+...+9900.2
2B=2+6+12+24+...+19800
Ta có xét A=1.2+3.2+6.2+12.2+...+9900.2
3A=1.2.3+3.2.6-1.2.3+...100.2.3
3A=98.100.102
A=33320
ta thay A vào B; 2B=33320=>B=16660
![](https://rs.olm.vn/images/avt/0.png?1311)
B=\(\frac{1}{2.x}+\left(\frac{1}{1.2}\frac{1}{2.3}\frac{1}{3.4}...\frac{1}{99.100}\right)\)
=\(\frac{1}{2.x}+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)\(=2\)
=\(\frac{1}{2.x}+\left(1-\frac{1}{100}\right)\)\(=2\)
=\(\frac{1}{2.x}+\frac{99}{100}\)\(=2\)
=\(\frac{1}{2.x}=2-\frac{99}{100}\)
=\(\frac{1}{2.x}=\frac{101}{200}\)
=\(2.x=200\)
=\(x=200:2=100\)
1/2 * x + 1/2 + 1/6 + 1/12 + .... + 1/9900 = 2
<=> 1/2 * x + ( 1/2 + 1/6 + 1/12 + ... + 1/9900 ) = 2
<=> 1/2 * x + ( 1 /1.2 + 1/2.3 + 1/3.4 + ... + 1/99.100 ) = 2
<=> 1/2 * x + ( 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + .... + 1/99 - 1/100 ) = 2
<=> 1/2 * x + ( 1 - 1/100 ) = 2
<=> 1/2 * x + ( 100/100 - 1/100 ) = 2
<=> 1/2 * x + 99/100 = 2
<=> 1/2 * x = 2 - 99/100
<=> 1/2 * x = 101/100
<=> x = 101/100 : 1/2
<=> x = 101/100 * 2
<=> x = 101/50
Vậy x = 101/50
![](https://rs.olm.vn/images/avt/0.png?1311)
Lấy phần tử của B là c.
TA có:
C=1+2+2^2+2^3+...+2^2008
2C=2+2^2+...+2^2009
=>C=2C-C=(2+2^2+...+2^2009)-(2+2^2+...+2^2009)-2-2^2009
=>B=2-2^2009/1-2^2009
![](https://rs.olm.vn/images/avt/0.png?1311)