Cho mình hỏi bài 6 với mọi ng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
Ví dụ 1: 1 que kem – 5000 đồng
3 que kem – 15000 đồng
Phương pháp làm:
Rút về đơn vị.Sử dụng tỉ số.Ví dụ 2: Cách 1. Rút về đơn vị
Tóm tắt
5 giờ - 135 km
7 giờ - ? km
Bài giải
Số kilomet ô tô đi được trong 1 giờ là: 135 : 5 = 27 (km)
Số kilomet ô tô đi được trong 7 giờ là: 27 x 7 = 189 (km)
Đáp số 189 km.
Cách 2. Sử dụng tỉ số
Số giờ và số km là hai đại lượng tỉ lệ thuận nên số km đi được trong 7 giờ là;
Đáp số: 189 km
Hai đại lượng tỉ lệ nghịch
A và B là hai đại lượng tỉ lệ nghịch khi A tăng bao nhiêu lần thì B giảm bấy nhiêu lần.
Cách 1. Rút về đơn vị
Tóm tắt
10 người – 7 ngày
? người – 5 ngày
Bài giải
1 người làm xong công việc trong: 7 x 10 = 70 (ngày)
Số người cần làm xong công việc trong 5 ngày là: 70 : 5 = 14 (người)
Đáp số 14 người
Bài 1: Tìm n∈Nn∈N sao cho 2n−1⋮72n−1⋮7
Giải:
Nếu n=3k(k∈N)n=3k(k∈N) thì 2n−1=23k−1=8k−1⋮72n−1=23k−1=8k−1⋮7
Nếu n=3k+1(k∈N)n=3k+1(k∈N) thì 2n−1=23k+1−1=2(23k−1)+1=7m+12n−1=23k+1−1=2(23k−1)+1=7m+1
Nếu n=3k+2(k∈N)n=3k+2(k∈N) thì 2n−1=23k+2−1=4(23k−1)+3=7m+32n−1=23k+2−1=4(23k−1)+3=7m+3
Vậy: 2n−1⋮72n−1⋮7khi n = BS 3
Bài 2: Tìm n ∈ N để:
a)3n−1⋮8a)3n−1⋮8
b)A=32n+3+24n+1⋮25b)A=32n+3+24n+1⋮25
c)5n−2n⋮9c)5n−2n⋮9
Giải:
a) Khi n = 2k (k ∈ N) thì 3n – 1 = 32k – 1 = 9k – 1 chia hết cho 9 – 1 = 8
Khi n = 2k + 1 (k ∈ N) thì 3n – 1 = 32k + 1 – 1 = 3. (9k – 1 ) + 2 = BS 8 + 2
Vậy : 3n – 1 chia hết cho 8 khi n = 2k (k ∈ N)
b) A = 32n + 3 + 24n + 1 = 27 . 32n + 2.24n = (25 + 2) 32n + 2.24n = 25. 32n + 2.32n + 2.24n
= BS 25 + 2(9n + 16n)
Nếu n = 2k +1(k ∈ N) thì 9n + 16n = 92k + 1 + 162k + 1 chia hết cho 9 + 16 = 25
Nếu n = 2k (k ∈ N) thì 9n có chữ số tận cùng bằng 1 , còn 16n có chữ số tận cùng bằng 6
suy ra 2((9n + 16n) có chữ số tận cùng bằng 4 nên A không chia hết cho 5 nên không chia hết cho 25
c) Nếu n = 3k (k ∈ N) thì 5n – 2n = 53k – 23k chia hết cho 53 – 23 = 117 nên chia hết cho 9
Nếu n = 3k + 1 thì 5n – 2n = 5.53k – 2.23k = 5(53k – 23k) + 3. 23k = BS 9 + 3. 8k
= BS 9 + 3(BS 9 – 1)k = BS 9 + BS 9 + 3
Tương tự: nếu n = 3k + 2 thì 5n – 2n không chia hết cho 9
Dạng 2: Tìm điều kiện chia hết
Ví dụ 1: Tìm số nguyên n để giá trị của biểu thức A chia hết cho giá trị của biểu thức B:
A=n3+2n2−3n+2,B=n2−nA=n3+2n2−3n+2,B=n2−n
Giải: Đặt tính chia:
Muốn chia hết, ta phải có 2 chia hết cho n(n-1),do đó 2 chia hết cho n(vì n là số nguyên)
Ta có:
n | 1 | -1 | 2 | -2 |
n-1 | 0 | -2 | 1 | -3 |
n(n-1) | 0 | 2 | 2 | 6 |
loại | loại |
Vậy n= -1; n = 2
Ví dụ 2:
Tìm số nguyên dương n để n5+1⋮n3+1.n5+1⋮n3+1.
Giải: Ta có
n5+1⋮n3+1⇔n2(n3+1)−(n2−1)⋮(n+1)(n2−n+1)⇔(n−1)(n+1)⋮(n+1)(n2−n+1)⇔n−1⋮n2−n+1(n+1≠0)n5+1⋮n3+1⇔n2(n3+1)−(n2−1)⋮(n+1)(n2−n+1)⇔(n−1)(n+1)⋮(n+1)(n2−n+1)⇔n−1⋮n2−n+1(n+1≠0)
Nếu n =1 thì ta được 0 chia hết cho 1
Nếu n>1 thì n−1<n(n−1)+1=n2−n+1n−1<n(n−1)+1=n2−n+1, do đó không thể chia hết cho n2−n+1.n2−n+1.
Vậy giá trị duy nhất của n tìm được là 1.
Ví dụ 3:
Tìm số nguyên n để n5+1⋮n3+1.n5+1⋮n3+1.
Giải: Theo ví dụ trên ta có:
n−1⋮n2−n+1⇒n(n−1)⋮n2−n+1⇒n2−n⋮n2−n+1⇒(n2−n+1)−1⋮n2−n+1⇒1⋮n2−n+1n−1⋮n2−n+1⇒n(n−1)⋮n2−n+1⇒n2−n⋮n2−n+1⇒(n2−n+1)−1⋮n2−n+1⇒1⋮n2−n+1
Có hai trường hợp
n2−n+1=1⇔n(n−1)=0⇔n=0;n=1.n2−n+1=1⇔n(n−1)=0⇔n=0;n=1. Các giá trị này thoả mãn đề bài.
n2−n+1=−1⇔n2−n+2=0n2−n+1=−1⇔n2−n+2=0 Không tìm được giá trị của n
Vậy n= 0; n =1 là hai số phải tìm.
Ví dụ 4:
Tìm số tự nhiên n sao cho 2n−1⋮7.2n−1⋮7.
Giải:
Nếu n = 3k (k ∈ N) thì 2n -1 = 23k -1 = 8k -1
Chia hết cho 7
Nếu n =3k +1(k ∈ N) thì
2n -1= 23k+1 – 1=2(23k -1) +1 = Bs 7 +1
Nếu n = 3k +2 ( k ∈ N) thì
2n -1= 23k+2 -1 =4(23k – 1)+3 =Bs 7 +3
Vậy 2n -1 chia hết cho 7 n = 3k(k ∈ N).
*Bài tập áp dụng
Bài 1: Tìm điều kiện của số tự nhiên a để a2+3a+2⋮6a2+3a+2⋮6
Giải:
Ta có a2+3a+2=(a+1)(a+2)a2+3a+2=(a+1)(a+2) là tích của 2 số tự nhiên liên tiếp nên chia hết cho 2
Do đó a2+3a+2⋮3⇔a2+2⋮3⇔a2=3k+1⇔a⋮̸3.a2+3a+2⋮3⇔a2+2⋮3⇔a2=3k+1⇔a⋮̸3.
Điều kiện phải tìm là a không chia hết cho 3.
Bài 2:
Tìm điều kiện của số tự nhiên a để a4−1⋮240.a4−1⋮240.
Bài 3:
Tìm số nguyên tố p để 4p +1 là số chính phương.
Bài 4.
Tìm ba số nguyên tố liên tiếp a,b,c sao cho a2+b2+c2a2+b2+c2 cũng là số nguyên tố
Giải: Xét hai trường hợp
+ Trong 3 số a,b,c có một số bằng 3.
Khi đó 22+32+52=3822+32+52=38 là hợp số (loại)
Còn 32+52+72=8332+52+72=83 là số nguyên tố.
+ Cả 3 số a,b,c đều lớn hơn 3.
Khi đó a2,b2,c2a2,b2,c2 đều chia cho 3 dư 1 nên
a2+b2+c2a2+b2+c2 chia hết cho 3,là hợp số (loại)
Vây ba số phải tìm là 3,5,7.
* Các bài tập tổng hợp các dạng toán trên
Bài 1. Cho các số nguyên a,b,c đều chia hết cho 6. Chứng minh rằng
Nếu a+ b+ c chia hết cho 6 thì a3+b3+c3⋮6a3+b3+c3⋮6
Bài 2: Chứng minh rằng tổng các lập phương của ba số nguyên liên tiếp thì chia hết cho 9.
Bài 3: Chứng minh rằng A chia hết cho B với
A=13+23+33+…+993+1003B=1+2+3+…+99+100.A=13+23+33+…+993+1003B=1+2+3+…+99+100.
Bài 4. Chứng minh rằng nếu các số tự nhiên a,b,c thoả mãn điều kiện
a2+b2=c2a2+b2=c2 thì abc chia hết cho 60.
Dạng 3: Tìm số dư
Ví dụ 1: Tìm số dư khi chia 21002100
a) cho 9; b) cho 25; c) cho 125.
Giải:
a) Lũy thừa của 2 sát với một bội số của 9 là 23 = 8 = 9-1
Ta có 2100 =2( 23)33 = 2(9-1)33=2(B(9-1))
= B( 9) -2= B(9)+ 7
Số dư khi chia 2100 cho 9 là 7.
b) Lũy thừa của 2 sát với bội số của 25 là
210 = 1024 =B(25) -1
Ta có 2100= (210)10 =(B(25) -1)10 =B(25) +1
Số dư khi chia 2100 cho 25 là 1.
c) Dùng công thức Niu-tơn:
2100 = (5 – 1)50 =550-50.5049+….+-50.5+1.
Không kể phần hệ số của khai triển Niu-tơn thì 48 số hạng đầu đã chứa lũy thừa của 5 với sô mũ lớn hơn hoặc bằng 3 nên chia hết cho 125, số hạng cuối là 1 .
Vậy 2100 chia cho 125 dư 1.
Ví dụ 2: Tìm ba chữ số tận cùng của 2100 khi viết trong hệ thập phân.
Giải: Theo ví dụ trên ta có
2100 = BS 125 +1,mà 2100 là số chẵn, nên ba chữ số tận cùng của nó chỉ có thể là 126, 376, 626 hoặc 876.
Mà 2100 chia hết cho8 nên ba chữ số tận cùng của nó phải chia hết cho 8.Trong 4 số trên chỉ có 376 thoả mãn điều kiện này.
Vậy ba chữ số tận cùng của 2100 là 376.
Chú ý: Nếu n là số chẵn không chia hết cho 5 thì 3 chữ số tận cùng của n100 là 376.
Ví dụ 3: Tìm 4 chữ số tận cùng của 51994 viết trong hệ thập phân.
Giải:
Cách 1. Ta thấy số tận cùng bằng 0625 nâng lên luỹ thừa nguyên dương bất kì vẫn tận cùng bằng 0625.Do đó
51994=54k+2 =25(54k)=25(0625)k
= 25.(…0625) = …..5625
Cách 2. Ta thấy 54k -1 chia hêt cho 54 -1
= (52 -1)(52 +1) nên chia hết cho 16.
Ta có: 51994 = 56( 5332 -1) +56
Do 56 chia hết cho 54, còn 5332 -1 chia hết cho 16 nên 56( 5332 -1) chia hết cho 10000
Và 56 = 15625.
Vậy 4 chữ số tận cùng của 51994 là 5
Bài tập tương tự
1.CMR với mọi số tự nhiên n thì 7n và 7n+4 có hai chữ số tận cùng như nhau.
+ Cho hs đặt câu hỏi: Khi nào hai số có hai chữ số tận cùng giống nhau?
– Khi hiệu của chúng chia hết cho 100
Giải: Xét hiệu của 7n +4– 7n = 7n( 74 -1)
= 7n .2400
Do đó 7n+1 và 7n có chữ số tận cùng giống nhau.
2.Tìm số dư của 2222+5555 cho 7.
+ Xét số dư của 22 và 55 cho 7?
Giải: Ta có 2222 + 5555 =(B(7) +1)22 +(B(7) -1)55
= B(7) +1+ B(7) -1
= B(7)
Vậy2222 + 5555 chia hết cho 7
hỏi là : số bóng cần mua để đủ lap cho các lớp là bao nhiêu ?
BÀI GIẢI
Bình có số quyển vở là:
26 + 6 = 32 (quyển)
Nam có số quyển vở là
32 - 9 = 23 (quyển )
trung bình mỗi bạn có số quyển vở là
(23 + 32 + 26) : 3 = 27 (quyển)
Đáp số: 27 quyển
NHỚ K MÌNH ĐẤY
1.
Điều kiện xác định của căn thức: \(\left[{}\begin{matrix}x\ge3\\x\le-3\end{matrix}\right.\)
\(\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{x^2+1}-x}{\sqrt{x^2-9}-4}=\dfrac{1-1}{1}=0\Rightarrow y=0\) là 1 TCN
\(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{x^2+1}-x}{\sqrt{x^2-9}-4}=\dfrac{-1-1}{-1}=2\Rightarrow y=2\) là 1 TCN
\(\lim\limits_{x\rightarrow-5}\dfrac{\sqrt{x^2+1}-x}{\sqrt{x^2-9}-4}=\dfrac{\sqrt{26}+5}{0}=+\infty\Rightarrow x=-5\) là 1 TCĐ
\(\lim\limits_{x\rightarrow5}\dfrac{\sqrt{x^2+1}-x}{\sqrt{x^2-9}-4}=\dfrac{\sqrt{26}-5}{0}=+\infty\Rightarrow x=5\) là 1 TCĐ
Hàm có 4 tiệm cận
2.
Căn thức của hàm luôn xác định
Ta có:
\(\lim\limits_{x\rightarrow2}\dfrac{2x-1-\sqrt{x^2+x+3}}{x^2-5x+6}=\lim\limits_{x\rightarrow2}\dfrac{\left(2x-1\right)^2-\left(x^2+x+3\right)}{\left(x-2\right)\left(x-3\right)\left(2x-1+\sqrt{x^2+x+3}\right)}\)
\(=\lim\limits_{x\rightarrow2}\dfrac{\left(x-2\right)\left(3x+1\right)}{\left(x-2\right)\left(x-3\right)\left(2x-1+\sqrt{x^2+x+3}\right)}\)
\(=\lim\limits_{x\rightarrow2}\dfrac{3x+1}{\left(x-3\right)\left(2x-1+\sqrt{x^2+x+3}\right)}=\dfrac{-7}{6}\) hữu hạn
\(\Rightarrow x=2\) ko phải TCĐ
\(\lim\limits_{x\rightarrow3}\dfrac{2x-1-\sqrt{x^2+x+3}}{x^2-5x+6}=\dfrac{5-\sqrt{15}}{0}=+\infty\)
\(\Rightarrow x=3\) là tiệm cận đứng duy nhất
A B C M K H E I
a) Xét tam giác ABC có:
AC=AB => tam giác ABC cân tại A => \(\widehat{ABC}=\widehat{ACB}\)
Xét \(\Delta ABM\) và \(\Delta ACM\) có:
AB=AC ( tam giác ABC cân)
\(\widehat{ABC}=\widehat{ACB}\)
cạnh AM chung (tam giác ABC cân)
=> \(\Delta ABM\) = \(\Delta ACM\) (c.g.c)
\(\Rightarrow\widehat{CAM}=\widehat{BAM}\) (2 góc tương ứng) => AM là tia phân giác của \(\widehat{BAC}\)
\(\Rightarrow\widehat{CMA}=\widehat{BMA}\) (2 góc tương ứng) . Mà \(\widehat{CMA}+\widehat{BMA}=180^0\)
\(\Rightarrow\widehat{CMA}=\widehat{BMA}=90^0\) => AM vuông góc với BC
b) xét \(\Delta MKA\) và \(\Delta MHA\) có:
\(\widehat{MKA}=\widehat{MHA}=90^0\) (giả thiết)
AM cạnh chung
\(\widehat{MAK}=\widehat{MAH}\) (chứng minh trên)
=> tam giác MKA = tam giác MHA (cạnh huyền - góc nhọn)
c) Xét tam giác CIE và tam giác AIB có :
EI=IB (giả thiết)
\(\widehat{EIC}=\widehat{AIB}\) (đối đỉnh)
AI=CI (giải thiết)
=> tam giác CIE = tam giác AIB (c.g.c)
=> \(\widehat{CEI}=\widehat{IBA}\) (2 góc tương ứng) . Mà 2 góc này lại ở vị trí so le trong
=> AB song song với EC (điều phải chứng minh)
Lại có: tam giác CIE = tam giác AIB thì ta được :
EC = AB ( 2 cạnh tương ứng )
mà AC = AB ( giả thiết)
=> AC = EC (điều phải chứng minh )