Cho a,b,c > 0. Tìm GTNN của \(P=(\frac{a}{a+b})^4+(\frac{b}{b+c})^4+(\frac{c}{c+a})^4\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Những câu hỏi liên quan
NH
8


NV
Nguyễn Việt Lâm
Giáo viên
1 tháng 3 2020
\(\frac{a^4}{b^2c}+b+b+c\ge4\sqrt[4]{\frac{a^4b^2c}{b^2c}}=4a\)
Tương tự: \(\frac{b^4}{c^2a}+2c+a\ge4b\) ; \(\frac{c^4}{a^2b}+2a+b\ge4c\)
Cộng vế với vế:
\(VT+3\left(a+b+c\right)\ge4\left(a+b+c\right)\Rightarrow VT\ge a+b+c=5\)
Dấu "=" xảy ra khi \(a=b=c=\frac{5}{3}\)

27 tháng 2 2018
ab+bc+ca = 4abc
<=> 1/a + 1/b + 1/c = 4
Áp dụng bđt : x^2+y^2+z^2 >= (x+y+z)^2/3 thì :
P >= 1/a^2+1/b^2+1/c^2)^2 /3
>= [(1/a+1/b+1/c)^2/3]^2/3
= [(4^2)/3^]2/3 = 256/27
Dấu "=" xảy ra <=> a=b=c=3/4
Vậy ........
Tk mk nha

NV
Nguyễn Việt Lâm
Giáo viên
18 tháng 8 2020
Bạn tham khảo:
Câu hỏi của Nobody - Toán lớp 8 | Học trực tuyến
Áp dụng bđt Bunyakovsky dạng phân thức ta có :
\(P=\left(\frac{a}{a+b}\right)^4+\left(\frac{b}{b+c}\right)^4+\left(\frac{c}{c+a}\right)^4\ge\frac{\left[\left(\frac{a}{a+b}\right)^2+\left(\frac{b}{b+c}\right)^2+\left(\frac{c}{c+a}\right)^2\right]^2}{3}\)(1)
Tiếp tục sử dụng bđt Bunyakovsky dạng phân thức ta có :
\(\left(\frac{a}{a+b}\right)^2+\left(\frac{b}{b+c}\right)^2+\left(\frac{c}{c+a}\right)^2\ge\frac{\left(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\right)^2}{3}\)(2)
Đặt \(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)
Áp dụng bđt Cauchy ta có :
\(\frac{a}{a+b}+\frac{a+b}{4a}\ge2\sqrt{\frac{a}{a+b}\cdot\frac{a+b}{4a}}=1\)
=> \(A+\frac{a+b}{4a}+\frac{b+c}{4b}+\frac{c+a}{4c}\ge3\)
=> \(A+\frac{a}{4a}+\frac{b}{4a}+\frac{b}{4b}+\frac{c}{4b}+\frac{c}{4c}+\frac{a}{4c}\ge3\)
=> \(A+\frac{3}{4}+\frac{b}{4a}+\frac{c}{4b}+\frac{a}{4c}\ge3\)
Theo Cauchy ta có : \(\frac{b}{4a}+\frac{c}{4b}+\frac{a}{4c}\ge3\sqrt[3]{\frac{b}{4a}\cdot\frac{c}{4b}+\frac{a}{4c}}=\frac{3}{4}\)
=> \(A+\frac{3}{4}+\frac{3}{4}\ge3\)=> \(A\ge\frac{3}{2}\)(3)
Từ (1), (2) và (3) => \(P\ge\frac{3}{16}\)
Đẳng thức xảy ra <=> a = b = c
Vậy MinP = 3/16 <=> a = b = c
Ta có:
\(P=\left(\frac{a}{a+b}\right)^4+\left(\frac{b}{b+c}\right)^4+\left(\frac{c}{c+a}\right)^4=\left(\frac{1}{1+\frac{b}{a}}\right)^4+\left(\frac{1}{1+\frac{c}{b}}\right)^4+\left(\frac{1}{1+\frac{a}{c}}\right)^4\)
Đặt \(\left(\frac{b}{a},\frac{c}{b},\frac{a}{c}\right)=\left(x,y,z\right)\left(x,y,z>0\right)\) \(\Rightarrow xyz=1\)
Khi đó: \(P=\frac{1}{\left(1+x\right)^4}+\frac{1}{\left(1+y\right)^4}+\frac{1}{\left(1+z\right)^4}\)
\(\ge3\left[\frac{1}{\left(1+x\right)^2}+\frac{1}{\left(1+y\right)^2}+\frac{1}{\left(1+z\right)^2}\right]^2\)
Ta có: \(\left(1+xy\right)\left(1+\frac{x}{y}\right)\ge\left(1+x\right)^2\Leftrightarrow\left(1+x\right)^2\le\frac{\left(1+xy\right)\left(x+y\right)}{y}\)( Bunyakovsky)
\(\Leftrightarrow\frac{1}{\left(1+x\right)^2}\ge\frac{y}{\left(1+xy\right)\left(x+y\right)}\) ; tương tự: \(\frac{1}{\left(1+y\right)^2}\ge\frac{x}{\left(1+xy\right)\left(x+y\right)}\)
Áp dụng BĐT Cauchy: \(\frac{1}{\left(1+z\right)^2}+\frac{1}{4}\ge2\sqrt{\frac{1}{\left(1+z\right)^2}\cdot\frac{1}{4}}=\frac{1}{1+z}\)
\(\Rightarrow\frac{1}{\left(1+z\right)^2}\ge\frac{1}{1+z}-\frac{1}{4}\)
Khi đó: \(P\ge\frac{1}{3}\left[\frac{x}{\left(1+xy\right)\left(x+y\right)}+\frac{y}{\left(1+xy\right)\left(x+y\right)}+\frac{1}{1+z}-\frac{1}{4}\right]^2\)
\(=\frac{1}{3}\left(\frac{1}{1+xy}+\frac{1}{1+z}-\frac{1}{4}\right)^2=\frac{1}{3}\left(\frac{xyz}{xyz+xy}+\frac{1}{1+z}-\frac{1}{4}\right)^2\)
\(=\frac{1}{3}\left(\frac{z}{1+z}+\frac{1}{1+z}-\frac{1}{4}\right)^2=\frac{1}{3}\left(1-\frac{1}{4}\right)^2=\frac{3}{16}\)
Dấu "=" xảy ra khi: a = b = c
Vậy Min(P) = 3/16 khi a = b = c