K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2021

áp dụng bđt Bunyakovsky dạng phân thức ta có ngay :

\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{\left(1+1+1\right)^2}{a+b+b+c+c+a}=\frac{9}{2\left(a+b+c\right)}=\frac{9}{2}\)

đẳng thức xảy ra <=> a = b = c = 1/3

vậy ta có đpcm

20 tháng 3 2020

BĐT phụ:\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\Leftrightarrow\left(x-y\right)^2\ge0\left(true\right)\)

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{4}{a+b}+\frac{1}{c}\ge\frac{9}{a+b+c}\) ( đpcm )

Vậy.......

13 tháng 2 2020

Mấy cái dấu "=" anh tự xét.

Áp dụng BĐT AM-GM: \(VT=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}=\frac{3}{\sqrt[3]{abc}}\ge\frac{3}{\frac{a+b+c}{3}}=\frac{9}{a+b+c}\)

a) Áp dụng: \(VT\ge\frac{\left(a+b+c\right)^2}{3}.\frac{9}{2\left(a+b+c\right)}=\frac{3}{2}\left(a+b+c\right)\)

b) \(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\le3-\frac{9}{x+y+z+3}=\frac{3}{4}\)

NV
12 tháng 11 2019

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{3}{\sqrt[3]{abc}}\)

Ta cần chứng minh \(\frac{3}{\sqrt[3]{abc}}\ge\frac{9}{abc+2}\Leftrightarrow abc+2\ge3\sqrt[3]{abc}\)

BĐT trên luôn đúng theo AM-GM vì: \(abc+2=abc+1+1\ge3\sqrt[3]{abc}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

17 tháng 10 2016

Từ giả thiết ta có \(1+c^2=ab+bc+ac+c^2=\left(a+c\right)\left(b+c\right)\) ; \(1+a^2=ab+bc+ac+a^2=\left(a+b\right)\left(a+c\right)\)

\(1+b^2=ab+bc+ac+b^2=\left(b+a\right)\left(b+c\right)\)

Suy ra \(\frac{a+b}{1+c^2}+\frac{b+c}{1+a^2}+\frac{c+a}{1+b^2}=\frac{a+b}{\left(c+a\right)\left(c+b\right)}+\frac{b+c}{\left(a+b\right)\left(a+c\right)}+\frac{c+a}{\left(b+a\right)\left(b+c\right)}\)

\(=\frac{\left(a+b\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}+\frac{\left(b+c\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}+\frac{\left(c+a\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

Theo BĐT Cauchy , ta có : \(\frac{\left(a+b\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge\frac{27\left(a+b\right)^2}{\left(a+b+b+c+c+a\right)^3}=\frac{27\left(a+b\right)^2}{8\left(a+b+c\right)^3}\)

Tương tự : \(\frac{\left(b+c\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge\frac{27\left(b+c\right)^2}{8\left(a+b+c\right)^3}\) ; \(\frac{\left(c+a\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge\frac{27\left(c+a\right)^2}{8\left(a+b+c\right)^3}\)

\(\Rightarrow\frac{\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge\frac{9}{8\left(a+b+c\right)^3}.3\left[\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2\right]\)

\(\ge\frac{9}{8\left(a+b+c\right)^3}.\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]^2\) (Áp dụng BĐT Bunhiacopxki)

\(=\frac{9.4\left(a+b+c\right)^2}{8\left(a+b+c\right)^3}=\frac{9}{2\left(a+b+c\right)}\) (đpcm)

3 tháng 6 2019

Áp dụng BĐT Cauchy-Schwarz dạng phân thức cho các số không âm:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)

\(''=''\Leftrightarrow a=b=c\)

3 tháng 6 2019

Trình bày như vậy khó lắm nếu bn ấy chưa tìm hiểu

BĐT

\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=9\)( do a,b,c>0)

\(\Leftrightarrow\left(\frac{a}{b}-2+\frac{b}{a}\right)+\left(\frac{b}{c}-2+\frac{c}{b}\right)+\left(\frac{a}{c}-2+\frac{c}{a}\right)\ge0\)

\(\Leftrightarrow\frac{\left(a-b\right)^2}{ab}+\frac{\left(b-c\right)^2}{bc}+\frac{\left(a-c\right)^2}{ac}\ge0\)(đúng)

NV
23 tháng 10 2019

\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(a+b+c\right)\ge9\)

Theo BĐT Cauchy ta có:

\(\left\{{}\begin{matrix}\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{3}{\sqrt[3]{abc}}\\a+b+c\ge3\sqrt[3]{abc}\end{matrix}\right.\)

\(\Rightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(a+b+c\right)\ge\frac{3}{\sqrt[3]{abc}}.3\sqrt[3]{abc}=9\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)

23 tháng 10 2019

cái này là toán 8 nên chưa hok bddt cô sy nha

27 tháng 5 2017

Nhân cả 2 vế với a+b+c 

Chứng minh \(\frac{a}{b}+\frac{b}{a}\ge2\) tương tự với \(\frac{b}{c}+\frac{c}{b};\frac{c}{a}+\frac{a}{c}\)

\(\Leftrightarrow\frac{a}{b}+\frac{b}{a}-2\ge0\Leftrightarrow\frac{a^2-2ab+b^2}{ab}\ge0\Leftrightarrow\frac{\left(a-b\right)^2}{ab}\ge0\)luôn đúng do a;b>0

dễ rồi nhé

27 tháng 5 2017

b) \(P=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\)

\(P=\left(\frac{x+1}{x+1}+\frac{y+1}{y+1}+\frac{z+1}{z+1}\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

\(P=\left(1+1+1\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

Áp dụng bđt Cauchy Schwarz dạng Engel (mình nói bđt như vậy,chỗ này bạn cứ nói theo cái bđt đề bài cho đi) ta được: 

\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge\frac{\left(1+1+1\right)^2}{x+1+y+1+z+1}=\frac{9}{4}\)

=>\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\le3-\frac{9}{4}=\frac{3}{4}\)

=>Pmax=3/4 <=> x=y=z=1/3

13 tháng 9 2019

Áp dụng BĐT Cauchy – Schwarz, ta được:

\(\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}\ge\frac{\left(a+b+c\right)^3}{b+c+a+c+a+b}\)

\(=\frac{\left(a+b+c\right)^3}{2\left(a+b+c\right)}=\frac{\left(a+b+c\right)^2}{2}\ge\frac{a^2+b^2+c^2}{2}=\frac{1}{2}\)

15 tháng 9 2019

ミ★长 - ƔξŦ★彡vãi cả cauchy-schwarz cho bậc 3: \("\frac{a^3}{b+c}+\frac{b^3}{c+a}+\frac{c^3}{a+b}\ge\frac{\left(a+b+c\right)^3}{b+c+c+a+a+b}\)

Thiết nghĩ nên sửa đề \(a,b,c>0\) thôi chứ là gì có d? Mà nếu a >b >c > d > 0 thì liệu dấu = có xảy ra?

Áp dụng BĐT Cauchy-Scwarz ta có: \(LHS\ge\frac{\left(a^2+b^2+c^2\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{a^2+b^2+c^2}{2}=\frac{1}{2}\)

6 tháng 4 2017

Ta có:

\(\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)=\frac{1}{2}\left(\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)

\(\ge\frac{1}{2}.3\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}.3\sqrt[3]{\frac{1}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=\frac{9}{2}\)

7 tháng 4 2017

BĐT trên \(=\frac{9}{2}\). Còn cách làm thì giống bạn alibaba nguyễn .

~~~ Chúc bạn học giỏi ~~~