Cho hình chữ nhật MNPQ có MK cắt đừng chéo QN tại K và vuông góc, Cho QK = 9cm; KN = 16cm. Tính chu vi và diện tích hình chữ nhật MNPQ (P/s: không talet không cos sin tan không allll, chỉ xài PyTago )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Xét ΔMKQ có
A là trung điểm của KM
B là trung điểm của KQ
Do đó: AB là đường trung bình của ΔMKQ
Suy ra: AB//MQ
a) Xét ΔMNH vuông tại H và ΔNQP vuông tại P có
\(\widehat{MNH}=\widehat{NQP}\)(hai góc so le trong, MN//QP)
Do đó: ΔMNH\(\sim\)ΔNQP(g-g)
b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔMNQ vuông tại M có MH là đường cao ứng với cạnh huyền NQ, ta được:
\(NH\cdot NQ=MN^2\)
a: Xet ΔBCD có
M,N lần lượtlà trung điểm của BC,CD
nên MN là đường trung bình
=>MN//BD và MN=BD/2
Xét ΔEBD có EP/ED=EQ/EB
nên PQ//BD và PQ/BD=EP/ED=1/2
=>MN//PQ và MN=PQ
Xét ΔDEC có DP/DE=DN/DC
nên PN//EC và PN=1/2EC
=>PN=1/2BD=PQ
Xét tứ giác MNPQ có
MN//PQ
MN=PQ
PN=PQ
=>MNPQ là hình thoi
b: NP//AC
=>góc QPN=góc BAC
=>góc NMP=góc EAF
=>PM//AF
c: Xét ΔAIK có
AF vừa là đường cao, vừa là phân giác
nên ΔAIK cân tại A
a: Xét ΔAMD vuông tại M và ΔCNB vuông tại N có
AD=CB
\(\widehat{ADM}=\widehat{CBN}\)
Do đó: ΔAMD=ΔCNB
Suy ra: AM=CN
A B C D N M
a) Ta có :
AB // CD ( Vì ABCD là hcn )
mà N \(\in\) AB
M \(\in\) DC
=) AN // MD
Xét hcn ABCD có :
M là tđ của cạnh DC
NA // MD
=) N là tđ của AB
=) NA = NB
mà AM = MC
lại có : AB = DC ( vì ABCD là hcn )
=) AN = DM
mà AN // DM
=) ANMD là hbh
mà góc M = 90o
=) ANMD là hcn
b)
Ta có : AN = MC ( Vì cx = MD )
mà AN // DC
=) ANCM là hbh
câu c) chút nữa mình làm bn vẽ hình trước
Đặt \(MK=x\left(x>0\right)\)
Áp dụng định lý Pythagoras, ta được: \(x^2+QK^2=MQ^2\Rightarrow x^2=MQ^2-81\)(\(\Delta MKQ\)vuông tại K)
\(x^2+NK^2=MN^2\Rightarrow x^2=MN^2-256\)(\(\Delta MKN\)vuông tại K)
Từ đó suy ra \(2x^2=\left(MN^2+MQ^2\right)-337=NQ^2-337=288\Rightarrow x=12\)(Do x > 0)
\(\Rightarrow MN=\sqrt{12^2+16^2}=20cm\); \(MQ=\sqrt{12^2+9^2}=15cm\)
\(\Rightarrow P_{MNPQ}=\left(20+15\right).2=70\left(cm\right);S_{MNPQ}=20.15=300\left(cm^2\right)\)
b, vì MNPQ là hình chữ nhật => MN//NP
=> ˆMQN=ˆQNPMQN^=QNP^ (so le trong)
xét ΔMKQΔMKQ và ΔQPNΔQPN có
ˆMQN=ˆQNPMQN^=QNP^ (cmt)
ˆMKQ=ˆNPQ=90oMKQ^=NPQ=90o^
=> ΔMKQΔMKQ đồng dạng với ΔQPNΔQPN (g.g)
=> MQNQ=MKQP(đpcm)MQNQ=MKQP(đpcm)