Cho a,b,c e R t/m a=b+1=c+2; c>0 C/m \(2\left(\sqrt{a}-\sqrt{b}\right)< \dfrac{1}{\sqrt{b}}< 2\left(\sqrt{b}-\sqrt{c}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
1. Thanks
2. Stereo
3. Daughter
4. Believe
5. Decorate
6. Bedroom
7. Aerobics
8. Search
9. Candy
10. Teddy bear
![](https://rs.olm.vn/images/avt/0.png?1311)
\(C=\frac{\sqrt{a}\left(a\sqrt{a}+1\right)}{a+\sqrt{a}+1}+\frac{1-2a+\sqrt{a}}{\sqrt{a}}=\frac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a+\sqrt{a}+1\right)}{a+\sqrt{a}+1}+\frac{1-2a+\sqrt{a}}{\sqrt{a}}\)
\(C=\sqrt{a}\left(\sqrt{a}+1\right)+\frac{1-2a+\sqrt{a}}{\sqrt{a}}=\frac{a\sqrt{a}-a+\sqrt{a}+1}{\sqrt{a}}\)
Hình như bạn ghi đề nhầm, ko rút gọn được nữa, mẫu số đằng sau là \(\sqrt{a}+1\) thì hợp lý hơn là \(\sqrt{a}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1.
Do A và B đều là khoảng nên \(A\cup B\) là 1 khoảng \(\Leftrightarrow A\cap B\ne\varnothing\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 4\\m+2>-2\end{matrix}\right.\) \(\Rightarrow-4< m< 4\)
2.
\(\left|x-1\right|>4\Leftrightarrow\left[{}\begin{matrix}x-1>4\\x-1< -4\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x>5\\x< -3\end{matrix}\right.\)
\(\Rightarrow A=\left(-\infty;-3\right)\cup\left(5;+\infty\right)\)
\(A\cap B\ne\varnothing\Leftrightarrow\left[{}\begin{matrix}m< -3\\m+1>5\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}m< -3\\m>4\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 1 chưa rõ đề !
Câu 2 :
a ) ĐKXĐ : \(\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)
b ) \(P=\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{2+5\sqrt{x}}{4-x}\)
\(=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\dfrac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\dfrac{2+5\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x+3\sqrt{x}+2+2x-4\sqrt{x}-2-5\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{3\sqrt{x}}{\sqrt{x}+2}\)
c ) \(P=2\Leftrightarrow\dfrac{3\sqrt{x}}{\sqrt{x}+2}=2\Leftrightarrow\sqrt{x}=4\Leftrightarrow x=16\)
2, a,ĐKXĐ:\(\left\{{}\begin{matrix}\sqrt{x}\ge0\\\left\{{}\begin{matrix}\sqrt{x}-2\ne0\\\sqrt{x}+2\ne0\\4-x\ne0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)
b,\(P=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\dfrac{2+5\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)\(P=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)+2\sqrt{x}\left(\sqrt{x}-2\right)-2-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(P=\dfrac{x+3\sqrt{x}+2+2x-4\sqrt{x}-2-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(P=\dfrac{3x-6\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(P=\dfrac{3\sqrt{x}}{\sqrt{x}+2}\)
c, P=2\(\Leftrightarrow\dfrac{3\sqrt{x}}{\sqrt{x}+2}=2\)
\(\Leftrightarrow3\sqrt{x}=2\left(\sqrt{x}+2\right)\Leftrightarrow\sqrt{x}=4\)
\(\Leftrightarrow x=16\)
Vậy x=16 thì P có giá trị =2