K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2021

Gọi số đó là \(\overline{abcd}\)

Theo đề bài, ta có: \(\overline{abcd}+a+b+c+d=2013\)

\(\Rightarrow1001a+101b+11c+2d=2013\)

Ta thấy với a=1 thì tổng trên sẽ bé hơn 2013 và với a=3 thì 1001a=3003 > 2013

=> a=2

=> 101b+11c+2d=2013-2.1001=11

Vậy b=0 => 11c+2d=11

c=1 ; d=0

=> số cần tìm là : n=2010

11 tháng 6 2016

1992 và 2010

Đáp số 1992 và 2010

= _ = "

13 tháng 12 2014

đáp số 1992 và 2010

20 tháng 3 2016

1992 và 2010

26 tháng 1 2021

\(^∗\)Xét \(n=2011\)thì \(S\left(2011\right)=2011^2-2011.2011+2010=2010\)(vô lí)

\(^∗\)Xét \(n>2011\)thì \(n-2011>0\)do đó \(S\left(n\right)=n\left(n-2011\right)+2010>n\left(n-2011\right)>n\)(vô lí do \(S\left(n\right)\le n\))

* Xét \(1\le n\le2010\)thì \(\left(n-1\right)\left(n-2010\right)\le0\Leftrightarrow n^2-2011n+2010\le0\)hay \(S\left(n\right)\le0\)(vô lí do \(S\left(n\right)>0\))

Vậy không tồn tại số nguyên dương n thỏa mãn đề bài

6 tháng 12 2023

Ta thấy \(87=1.87=3.29\) nên ta xét 2TH

 TH1: \(\left\{{}\begin{matrix}S\left(n\right)=1\\S\left(n+1\right)=87\end{matrix}\right.\)

 Vì \(S\left(n\right)=1\) nên \(n=100...00\), do đó \(n+1=100...01\) nên \(S\left(n+1\right)=2\), mâu thuẫn.

 TH2: \(\left\{{}\begin{matrix}S\left(n\right)=87\\S\left(n+1\right)=1\end{matrix}\right.\)

 Vì \(S\left(n+1\right)=1\) nên \(n+1=100...00\), do đó \(n=999...99\) chia hết cho 9, dẫn đến \(S\left(n\right)⋮9\), mâu thuẫn với \(S\left(n\right)=87\)

 TH3: \(\left\{{}\begin{matrix}S\left(n\right)=3\\S\left(n+1\right)=29\end{matrix}\right.\)

Vì \(S\left(n\right)=3\) nên \(n⋮3\) \(\Rightarrow n+1\) chia 3 dư 1 \(\Rightarrow S\left(n+1\right)\) chia 3 dư 1. Thế nhưng 29 chia 3 dư 2, vô lý.

 TH4: \(\left\{{}\begin{matrix}S\left(n\right)=29\\S\left(n+1\right)=3\end{matrix}\right.\) . Ta lại xét các TH:

   TH4.1: \(n+1=10...010...01\) hoặc \(200...01\) hoặc \(100...2\). Khi đó trong tất cả các TH thì ta đều có \(S\left(n\right)=2\), không thỏa mãn.

   TH4.2: \(n+1=10...010...010...0\) hoặc \(200...0100...0\) hoặc \(100...020...0\) hoặc \(300...00\). Khi đó trong tất cả các TH thì ta đều có\(S\left(n\right)=2+9m\left(m\inℕ\right)\) với m là số chữ số 9 có trong n. Để chọn được số nhỏ nhất, ta chỉ việc lược bỏ tất cả các số 0 ở giữa và cho \(m=3\) để có \(S\left(n\right)=29\). Vậy, ta tìm được \(n=11999\) (thỏa mãn)

 Vậy, số cần tìm là 11999.

  

S(n).S(n+1)=3.29=1.87S(n).S(n+1)=3.29=1.87

- Nếu S(n)=1⇒S(n)=1⇒ nn có dạng 100...0100...0 S(n+1)=2≠87⇒S(n+1)=2≠87 (loại)

S(n).S(n+1)=3.29⇒S(n).S(n+1)=3.29

Gọi nn có dạng ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯a1a2...aka1a2...ak¯ với aiN;a1≠0ai∈N;a1≠0

- Nếu ak≠9⇒S(n+1)=S(n)+1⇒S(n)ak≠9⇒S(n+1)=S(n)+1⇒S(n) và S(n+1)S(n+1) luôn khác tính chẵn lẻ S(n).S(n+1)⇒S(n).S(n+1) là một số chẵn, mà 87 lẻ  loại

ak=9⇒ak=9 S(n)>S(n+1)⇒{S(n)=29S(n+1)=3⇒S(n)>S(n+1)⇒{S(n)=29S(n+1)=3 S(n)−S(n+1)=26⇒S(n)−S(n+1)=26

Giả sử tận cùng bằng xx số 9 n=¯¯¯¯¯¯¯¯¯¯¯¯¯¯A9...9⇒n=A9...9¯ với A có tận cùng khác 9

n+1=¯¯¯¯¯¯¯¯¯¯¯¯¯¯B0...0⇒n+1=B0...0¯ (x số 0 và B=A+1B=A+1)

{S(n)=S(A)+9.xS(n+1)=S(B)=S(A+1)=S(A)+1⇒{S(n)=S(A)+9.xS(n+1)=S(B)=S(A+1)=S(A)+1

S(n)−S(n+1)=9x−1=26⇒9x=27⇒x=3⇒S(n)−S(n+1)=9x−1=26⇒9x=27⇒x=3

Vậy n=¯¯¯¯¯¯¯¯¯¯¯¯A999⇒S(n)=S(A)+27=29⇒S(A)=2n=A999¯⇒S(n)=S(A)+27=29⇒S(A)=2

Mà nn nhỏ nhất khi AA nhỏ nhất, ta có số nhỏ nhất có tổng các chữ số bằng 2 là 2 A=2⇒A=2

n=2999

3 tháng 1 2015

Bài 1: n có 4 chữ số dạng 20ab => 20ab + 2 + a +b=2013 => 11a+b=11

a=0 => b=11(loại)

a=1 => b=0 => n=2010

với n<2000 => tổng các chữ số của n lớn nhất là: 1+9+9+9=28 => n  ≥ 2013-28=1985

xét n có dạng 19ab: 19ab+1+9+a+b=2013 => 11a+b=103

do n ≥ 1985 => a ≥ 8

a=8 => b=7,5 (loại)

a=9 => b=2 => n=1992

3 tháng 1 2015

Bài 2: Chắc là hợp số :D

từ \(a^2+b^2+c^2=e^2+f^2+d^2\)

=> \(a^2+b^2+c^2\text{ ≡}d^2+e^2+f^2\)(mod 2)

=> \(a^2+b^2+c^2+2\left(ab+bc+ca\right)\)  ≡ \(d^2+e^2+f^2+2\left(de+ef+fd\right)\)(mod 2)

=>\(\left(a+b+c\right)^2\text{ ≡}\left(d+e+f\right)^2\) (mod 2)

=>a+b+c ≡ d+e+f (mod 2)

=> a+b+c+d+e+f chia hết cho 2

17 tháng 2 2016

2010 vì 2+0+1+0 +2010 =2013 

4 tháng 3 2016

Số đó là 1992

4 tháng 3 2016

Đó là số 1992 (hoặc 2010)