Cho x,y thoả mãn điều kiện \(x^3+y^3-6xy=-11\). Chứng minh rằng \(\dfrac{-7}{3}< x+y< -2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Áp dụng bất đẳng thức Cô si ta có
\left(x.\frac{1}{2}+x.\frac{1}{2}+y.\frac{1}{2}+y.\frac{1}{2}+x.\sqrt{1-x^2}+y.\sqrt{1-x^2}\right)^2\le(x.21+x.21+y.21+y.21+x.1−x2+y.1−x2)2≤
\left(x^2+x^2+y^2+y^2+x^2+y^2\right)\left(\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+1-x^2+1-y^2\right)(x2+x2+y2+y2+x2+y2)(41+41+41+41+1−x2+1−y2)
tức là \left(x+y+x\sqrt{1-y^2}+y\sqrt{1-x^2}\right)^2\le\left(3x^2+3y^2\right)\left(3-x^2-y^2\right)(x+y+x1−y2+y1−x2)2≤(3x2+3y2)(3−x2−y2)
Suy ra x+y+x\sqrt{1-y^2}+y\sqrt{1-x^2}\le\sqrt{3}.\sqrt{\left(x^2+y^2\right)\left(3-x^2-y^2\right)}x+y+x1−y2+y1−x2≤3.(x2+y2)(3−x2−y2)
\le\sqrt{3}.\frac{\left(x^2+y^2\right)+\left(3-x^2-y^2\right)}{2}≤3.2(x2+y2)+(3−x2−y2)
hay x+y+x\sqrt{1-y^2}+y\sqrt{1-x^2}\le\frac{3\sqrt{3}}{2}x+y+x1−y2+y1−x2≤233 (đpcm)
Viết lại điều kiện đã cho dưới dạng
\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=6ab1+bc1+ca1+a1+b1+c1=6
Áp dụng bất đẳng thức hiển nhiên xy+yz+zx\le x^2+y^2+z^2xy+yz+zx≤x2+y2+z2 ta có
\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\le\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}ab1+bc1+ca1≤a21+b21+c21 (1)
Lại áp dụng x\le\frac{x^2+1}{2}x≤2x2+1, ta có \frac{1}{a}\le\frac{1}{2}\left(1+\frac{1}{a^2}\right)a1≤21(1+a21), do đó
\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le\frac{1}{2}\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)+\frac{3}{2}a1+b1+c1≤21(a21+b21+c21)+23 (2)
Cộng theo vế (1), (2) và chú ý đến điều kiện ta được
6\le\frac{3}{2}\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)+\frac{3}{2}6≤23(a21+b21+c21)+23
Suy ra 3\le\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}3≤a21+b21+c21 (đpcm)
\(\Leftrightarrow\left(x+y\right)^3-3xy\left(x+y\right)+\left(x+y\right)^3+30xy=2000\)
\(\Leftrightarrow2\left[\left(x+y\right)^3-1000\right]-3xy\left(x+y-10\right)=0\)
\(\Leftrightarrow2\left(x+y-10\right)\left[\left(x+y\right)^2-10\left(x+y\right)+100\right]-3xy\left(x+y-10\right)=0\)
\(\Leftrightarrow\left(x+y-10\right)\left[2\left(x+y\right)^2-20\left(x+y\right)+200-3xy\right]=0\)
\(\Leftrightarrow x+y=10\)
Do:
\(2\left(x+y\right)^2-20\left(x+y\right)+200-3xy\)
\(=\left(x+y-10\right)^2+\left(x+y\right)^2-3xy+100\)
\(=\left(x+y-10\right)^2+\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+100>0\)
https://hoc24.vn/cau-hoi/tim-xyin-z-biet-a2x2-xy-7x-2y-y2-70bx2-2y2-3xy-3x-5y-140ps-huong-dan-em-lam-chi-tiet-dang-nay-nua-voi-a.330915967066
Giúp e dạng này với anh . Cho e spam xíu :(
\(\Leftrightarrow\left(x+y\right)^3-3xy\left(x+y\right)+\left(x+y\right)^3+30xy=2000\)
\(\Leftrightarrow2\left[\left(x+y\right)^3-1000\right]-3xy\left(x+y-10\right)=0\)
\(\Leftrightarrow2\left(x+y-10\right)\left[\left(x+y\right)^2-10\left(x+y\right)+100\right]-3xy\left(x+y-10\right)=0\)
\(\Leftrightarrow\left(x+y-10\right)\left[2\left(x+y\right)^2-20\left(x+y\right)+200-3xy\right]=0\)
\(\Leftrightarrow x+y=10\)
Do:
\(2\left(x+y\right)^2-20\left(x+y\right)+200-3xy\)
\(=\left(x+y-10\right)^2+\left(x+y\right)^2-3xy+100\)
\(=\left(x+y-10\right)^2+\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+100>0\)
Ta có \(x+y\le1\Leftrightarrow1-x\ge y>0\Leftrightarrow0< x< 1\)
Giả sử \(x^2-\dfrac{3}{4x}-\dfrac{x}{y}\le-\dfrac{9}{4}\)
\(\Leftrightarrow4x^2+9\le\dfrac{3}{x}+\dfrac{4x}{y}\\ \Leftrightarrow\dfrac{4x}{1-x}+\dfrac{3}{x}\ge4x^2+9\\ \Leftrightarrow\dfrac{4x^2+3\left(1-x\right)-x\left(4x^2+9\right)\left(1-x\right)}{x\left(1-x\right)}\ge0\\ \Leftrightarrow\dfrac{4x^4-4x^3+13x^2-12x+3}{x\left(1-x\right)}\ge0\\ \Leftrightarrow\dfrac{\left(x^2+3\right)\left(2x-1\right)^2}{x\left(1-x\right)}\ge0\)
Vì \(x>0;1-x>0\) nên BĐT trên luôn đúng
Vậy ta được đpcm
Dấu \("="\Leftrightarrow x=y=\dfrac{1}{2}\)
Ai help tặng `92092030280438094830840385083 tick