Chứng minh 17^5 + 1 chia hết cho 18
Mình cảm ơn ạ !!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Giải
Gọi 2011 số đó lần lượt là a1,a2,...,a2011
Theo bài ra tổng 5 số bất kì của 2011 số trên đều chia hết cho 25. Trừ ra một số ta có thể nhóm 2010 số còn lại thành 402 cặp
Ta có: (a2+a3+a4+a5+a6)+(a7+a8+a9+a10+a11)+\(.\)..+(a2007+a2008+a2009+a2010+a2011)\(⋮\)25( trừ ra số a1) (1)
(a1+a3+a4+a5+a6)+(a7+a8+a9+a10+a11)+...+(a2007+a2008+a2009+a2010+a2011)⋮25( trừ ra số a2) (2)
Tiếp tục quá trình
..........
cho đến
(a1+a2+a3+a4+a5)+(a6+a7+a8+a9+a10)+...+(a2006+a2007+a2008+a2009+a2010)\(⋮\)25(TRỪ RA Số a2011)(2011)
Nếu cộng tất cả các vế trái của (1), (2), ...(2011) lại với nhau
ta thấy đc rằng mỗi một số trong 2011 số trên xuất hiện 2010 lần
=> 2010(a1+a2+a3+a4+a5+a6+a7+a8+a9+a10+...+a2006+a2007+a2008+a2009+a2010+a2011)\(⋮\)25
=> 402(a1+a2+a3+a4+a5+a6+a7+a8+a9+a10+...+a2006+a2007+a2008+a2009+a2010+a2011)\(⋮\)\(5\)Vì (402,5)=1
=> a1+a2+a3+a4+a5+a6+a7+a8+a9+a10+...+a2006+a2007+a2008+a2009+a2010+a2011⋮5
(a1+a3+a4+a5+a6)+(a7+a8+a9+a10+a11)+...+(a2007+a2008+a2009+a2010+a2011)\(⋮\)5 \(\left(đpcm\right)\)
Giải
Gọi 2011 số đó lần lượt là a1,a2,...,a2011
Theo bài ra tổng 5 số bất kì của 2011 số trên đều chia hết cho 25. Trừ ra một số ta có thể nhóm 2010 số còn lại thành 402 cặp
Ta có: (a2+a3+a4+a5+a6)+(a7+a8+a9+a10+a11)+...+(a2007+a2008+a2009+a2010+a2011)⋮25( trừ ra số a1) (1)
(a1+a3+a4+a5+a6)+(a7+a8+a9+a10+a11)+...+(a2007+a2008+a2009+a2010+a2011)⋮25( trừ ra số a2) (2)
Tiếp tục quá trình
..........
cho đến
(a1+a2+a3+a4+a5)+(a6+a7+a8+a9+a10)+...+(a2006+a2007+a2008+a2009+a2010)⋮25(TRỪ RA Số a2011)(2011)
Nếu cộng tất cả các vế trái của (1), (2), ...(2011) lại với nhau
ta thấy đc rằng mỗi một số trong 2011 số trên xuất hiện 2010 lần
=> 2010(a1+a2+a3+a4+a5+a6+a7+a8+a9+a10+...+a2006+a2007+a2008+a2009+a2010+a2011)⋮25
=> 402(a1+a2+a3+a4+a5+a6+a7+a8+a9+a10+...+a2006+a2007+a2008+a2009+a2010+a2011)⋮5Vì (402,5)=1
=> a1+a2+a3+a4+a5+a6+a7+a8+a9+a10+...+a2006+a2007+a2008+a2009+a2010+a2011⋮5
(a1+a3+a4+a5+a6)+(a7+a8+a9+a10+a11)+...+(a2007+a2008+a2009+a2010+a2011)⋮5(đpcm)
Ta áp dụng công thức: Nếu đem nhốt n+1 con thỏ vào n loongfthif sẽ có ít nhất 1 cái lồng nhốt từ 2 con thỏ trở lên
Áp dụng công thức trên để chứng minh \(n\in N\) cho 17n -1 \(⋮\) 25
Xét 26 con thỏ là 26 số: 17k;17k+1; ...;17k+25
Đem 26 số trên chia cho 25 ta sẽ có 26 số dư từ: 0;1;2;.....;24 (có 25 giá trị)
Nên sẽ có 2 số dư bằng nhau và trong 26 số trên có 2 số đồng dư với nhau khi chia cho 25
\(\Rightarrow\) Hiệu của 2 số đó chia hết cho 25
Hiệu 2 số có dang: 17x - 17y chia hết cho 25 ( x > y )
17y.(17x-y-1) chia hết cho 25
Mà 17y không chia hết cho 25 nên 17x-y chia hết cho 25
Đặt n=x-y nên \(17^n-1⋮25\) (đpcm)
Ta có: \(S=1+2+2^2+2^3+...+2^{61}\)
\(=\left(1+2+2^2+2^3\right)+\left(2^4+2^5+2^6+2^7\right)+...+\left(2^{58}+2^{59}+2^{60}+2^{61}\right)\)
\(=15+2^4\cdot15+...+2^{58}\cdot15\)
\(=15\left(1+16+...+2^{58}\right)⋮5\)(đpcm)
a) \(A=7^{13}+7^{14}+7^{15}+7^{16}+...+7^{100}\)
\(A=\left(7^{13}+7^{14}\right)+\left(7^{15}+7^{16}\right)+...+\left(7^{99}+7^{100}\right)\)
\(A=7^{13}\left(1+7\right)+7^{15}\left(1+7\right)+...+7^{99}\left(1+7\right)\)
\(A=7^{13}.8+7^{15}.8+...+7^{99}.8\)
\(A=8.\left(7^{13}+7^{15}+...+7^{99}\right)\)
⇒ \(A⋮8\)
Vậy A chia hết cho 8 (đpcm)
a) A = 7¹³ + 7¹⁴ + 7¹⁵ + 7¹⁶ + ... + 7⁹⁹ + 7¹⁰⁰
= (7¹³ + 7¹⁴) + (7¹⁵ + 7¹⁶) + ... + (7⁹⁹ + 7¹⁰⁰)
= 7¹³.(1 + 7) + 7¹⁵.(1 + 7) + ... + 7⁹⁹.(1 + 7)
= 7¹³.8 + 7¹⁵.8 + ... + 7⁹⁹.8
= 8.(7¹³ + 7¹⁵ + ... + 7⁹⁹) ⋮ 8
Vậy A ⋮ 8
b) B = 2 + 2² + 2³ + 2⁴ + ... + 2²⁰⁰
= 2 + 2² + 2³ + 2⁴ + 2⁵ + 2⁶ + 2⁷ + 2⁸ + ... + 2¹⁹⁷ + 2¹⁹⁸ + 2¹⁹⁹ + 2²⁰⁰
= (2 + 2² + 2³ + 2⁴) + (2⁵ + 2⁶ + 2⁷ + 2⁸) + ... + (2¹⁹⁷ + 2¹⁹⁸ + 2¹⁹⁹ + 2²⁰⁰)
= 30 + 2⁴.(2 + 2² + 2³ + 2⁴) + 2¹⁹⁶.(2 + 2² + 2³ + 2⁴)
= 30 + 2⁴.30 + ... + 2¹⁹⁶.30
= 30.(1 + 2⁴ + ... + 2⁹⁶)
= 5.6.(1 + 2⁴ + ... + 2¹⁹⁶) ⋮ 5
Vậy B ⋮ 5
\(S=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{96}\left(1+3+3^2\right)\)
\(=13+3^3.13+...+3^{96}.13=13\left(1+3^3+...+3^{96}\right)⋮13\)
\(B=2+2^2+2^3+2^4+...+2^{99}+2^{100}=2\left(1+2^2+2^3+2^4\right)+...+2^{96}\left(1+2^2+2^3+2^4\right)=2.31+2^6.31+...+2^{96}.31=31\left(2+2^6+...+2^{96}\right)⋮31\)
92n+1+1 = 9.92n +1 = 9.81n +1
=> 81n luôn có số tận cùng là 1 (1)
=> Vì 9.81 có chữ số tận cùng = 9 nên 9.81n cũng có chữ số tận cùng là 9 // cũng có thể giải thk theo (1) nên 9.81n có chữ số tận cùng là 9
=> 9.81n + 1 có chữ số tận cùng là 9 thêm 1 = 0 \(⋮10\)nên 92n+1 + 1 cũng \(⋮10\)