Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔDEF vuông tại D có
\(DE=DF\cdot\cos60^0\)
\(=15\cdot\dfrac{1}{2}=7.5\left(cm\right)\)
Áp dụng định lí Pytago vào ΔDFE vuông tại D, ta được:
\(EF^2=DE^2+DF^2\)
\(\Leftrightarrow DF^2=15^2-7.5^2=\dfrac{675}{4}\)
hay \(DF=\dfrac{15\sqrt{3}}{2}\left(cm\right)\)
DE=cos E .EF
DE=0,5.15
DE=7,5cm
DF=sinE.EF
DF=\(\dfrac{\sqrt{3}}{2}.15=\dfrac{15\sqrt{3}}{2}\)
Ta có: \(\cos60^o=\dfrac{DE}{E\text{F}}=\dfrac{\text{1}}{2}\Rightarrow DE=\dfrac{E\text{F}}{2}=\dfrac{\text{1}5}{2}=7,5cm\)
Áp dụng định lí Py-ta-go vào ΔDEF vuông tại D
⇒ EF2=DE2+DF2 ⇒ DF2=EF2-DE2=152-7,52=168,75
⇒ \(DF=\dfrac{15\sqrt{3}}{2}\) cm
Đề thiếu
Vì \(\Delta ABC=\Delta DEF\Rightarrow\left\{{}\begin{matrix}DF=AC=??\\EF=BC=7\left(cm\right)\\\widehat{B}=\widehat{E}=60^0\end{matrix}\right.\)
góc F=90-30=60 độ
Xét ΔDEF vuông tại D có sin E=DF/EF
=>DF/20=1/2
=>DF=10cm
=>DE=10*căn 3(cm)
1) áp dụng định lí pytago vào tam giác DEF ta được:
EF2=DE2+DF2
=92+122
=225
=>EF=15(cm)
2)ta có \(DK=\frac{EF}{2}=\frac{15}{2}=7,5\left(cm\right)\)(định lí : trong t/g vuông vuông đường trung tuyến ứng với cạnh huyền bằng nưa độ dài cạnh huyền)
3)ta có: DE<DF<EF(9cm <12cm <15cm )
=>góc DFE<góc DEF< góc EDF(Định lí)
a: Xét ΔEDC vuông tại D và ΔEHC vuông tại H có
EC chung
\(\widehat{DEC}=\widehat{HEC}\)
Do đó; ΔEDC=ΔEHC
b: Xét ΔDCK vuông tại D vàΔHCF vuông tại H có
CD=CH
\(\widehat{DCK}=\widehat{HCF}\)
Do đó; ΔDCK=ΔHCF
Suy ra: CK=CF
a, Xét Δ DCE và Δ HCE, có :
EC là cạnh chung
\(\widehat{CDE}=\widehat{CHE}=90^o\)
\(\widehat{DEC}=\widehat{HEC}\) (EC là tia phân giác \(\widehat{DEH}\))
=> Δ DCE = Δ HCE (g.c.g)
=> DC = HC
b, Xét Δ DCK và Δ HCF, có :
DC = HC (cmt)
\(\widehat{DCK}=\widehat{HCF}\) (đối đỉnh)
=> Δ DCK = Δ HCF ( ch - cgn)
=> CK = CF
=> Δ CKF cân tại C
Xét ΔDEF vuông tại D có
\(\sin\widehat{E}=\dfrac{DF}{FE}\)(tỉ số lượng giác góc nhọn)
\(\Leftrightarrow\sin60^0=\dfrac{DF}{18}\)
\(\Leftrightarrow\dfrac{DF}{18}=\dfrac{\sqrt{3}}{2}\)
\(\Leftrightarrow DF=\dfrac{18\cdot\sqrt{3}}{2}=9\sqrt{3}\)
Vậy: \(DF=9\sqrt{3}cm\)
Xét ΔDEF vuông tại D có
sinˆE=DFFEsinE^=DFFE(tỉ số lượng giác góc nhọn)
⇔sin600=DF18⇔sin600=DF18
⇔DF18=√32⇔DF18=32
⇔DF=18⋅√32=9√3⇔DF=18⋅32=93
Vậy: DF=9√3cm
Bạn tham khảo !