K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2021

\(\frac{x^2-49}{x-7}+x-2=\frac{\left(x-7\right)\left(x+7\right)}{x-7}+\frac{\left(x-2\right)\left(x-7\right)}{x-7}\)

\(=\frac{\left(x-7\right)\left[\left(x+7\right)+\left(x-2\right)\right]}{x-7}=\frac{\left(x-7\right)\left(2x+5\right)}{x-7}=2x+5\)

Đặt \(2x+5=0\Leftrightarrow x=-\frac{5}{2}\)

Vậy \(x=-\frac{5}{2}\)

a: \(=x^2-36-x^2-14x-49+14x=-85\)

b: \(=\dfrac{5x+35+4x-28-5x-7}{\left(x-7\right)\left(x+7\right)}=\dfrac{4x}{x^2-49}\)

6 tháng 1 2022

\(a,\left(x+6\right)\left(x-6\right)-\left(x+7\right)^2+14x=x^2-36-x^2-14x-49+14x=-85\\ b,\dfrac{5}{x-7}+\dfrac{4}{x+7}+\dfrac{5x+7}{49-x^2}=\dfrac{5\left(x+7\right)+4\left(x-7\right)-\left(5x+7\right)}{\left(x-7\right)\left(x+7\right)}=\dfrac{5x+35+4x-28-5x-7}{\left(x-7\right)\left(x+7\right)}=\dfrac{4x}{\left(x-7\right)\left(x+7\right)}\)

25 tháng 3 2022

!!!!!!!!!!!!!!!!!!!.............................

15 tháng 7 2017

a)\(\left(x2+7\right).\left(x2-49\right)< 0\)

\(\left(x2+7\right).\left(x2-49\right)< 0\) chứng tỏ hai vế \(\left(x2+7\right)\)\(\left(x2-49\right)\) khác dấu nhau .

\(\left\{{}\begin{matrix}\left(x2+7\right)>0\\\left(x2-49\right)< 0\end{matrix}\right.\)

\(\left(x2+7\right)\) > \(\left(x2-49\right)\)

Nên ta có:

\(\left\{{}\begin{matrix}\left(x2+7\right)>0\\\left(x2-49\right)< 0\end{matrix}\right.\)\(\Rightarrow\)\(\left\{{}\begin{matrix}\left(x+7\right)=0\\\left(x-49\right)=0\end{matrix}\right.\)\(\Rightarrow\)\(\left\{{}\begin{matrix}x=-7\\x=49\end{matrix}\right.\)

Vậy hai số nguyên đó là -7 và 49 .

Còn phần còn lại bạn làm tương tự nhé banhqua !

19 tháng 7 2017

a) M = 2016.         b) N = 8100.          c) P = 2.

22 tháng 5 2021

\(\left(1-x\right)\left(5x+3\right)=\left(3x-7\right)\left(x-1\right)\)

\(< =>\left(1-x\right)\left(5x+3+3x-7\right)=0\)

\(< =>\left(1-x\right)\left(8x-4\right)=0\)

\(< =>\orbr{\begin{cases}1-x=0\\8x-4=0\end{cases}< =>\orbr{\begin{cases}x=1\\x=\frac{1}{2}\end{cases}}}\)

22 tháng 5 2021

\(\left(x-2\right)\left(x+1\right)=x^2-4\)

\(< =>\left(x-2\right)\left(x+1\right)=\left(x-2\right)\left(x+2\right)\)

\(< =>\left(x-2\right)\left(x+1-x-2\right)=0\)

\(< =>-1\left(x-2\right)=0\)

\(< =>2-x=0< =>x=2\)

21 tháng 12 2021

b: -7<x<7

1 tháng 11 2021

a) \(\Rightarrow\left(2x-3\right)^2=49\)

\(\Rightarrow\left[{}\begin{matrix}2x-3=7\\2x-3=-7\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)

b) \(\Rightarrow\left(x-5\right)\left(2x+7\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=5\\x=-\dfrac{7}{2}\end{matrix}\right.\)

c) \(\Rightarrow x\left(x-5\right)+2\left(x-5\right)=0\Rightarrow\left(x-5\right)\left(x+2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)

1 tháng 11 2021

a, ⇒ (2x - 3)2 = 49

    ⇒  (2x - 3)2 = \(\left(\pm7\right)^2\)

    ⇒ \(\left[{}\begin{matrix}2x-3=7\\2x-3=-7\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=10\\2x=-4\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)

b, ⇒ 2x.(x - 5) + 7.(x - 5) = 0

    ⇒ (x - 5).(2x + 7)  = 0

    ⇒ \(\left[{}\begin{matrix}x-5=0\\2x+7=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\2x=-7\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=5\\x=-\dfrac{7}{2}\end{matrix}\right.\)

c, ⇒ x2 - 5x + 2x - 10 = 0

    ⇒ (x2 - 5x) + (2x - 10) = 0

    ⇒ x.(x - 5) +2.(x - 5)    = 0

    ⇒ (x - 5).(x + 2)=0

    \(\Rightarrow\left[{}\begin{matrix}x+2=0\\x-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=5\end{matrix}\right.\)

22 tháng 10 2021

\(\left(2x-3\right)^2=7^2\)

\(2x-3=7\)

\(2x=10\)

\(x=5\)

Vậy x=5

22 tháng 10 2021

a: \(\left(2x-3\right)^2-49=0\)

\(\Leftrightarrow\left(2x+4\right)\left(2x-10\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=5\end{matrix}\right.\)