Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
\(2x+4y=100\Leftrightarrow x+2y=50\Rightarrow x=50-2y\)
Vì \(50-2y\) chẵn với mọi \(y\) nguyên dương nên \(x\) chẵn.
Mặt khác, \(y\geq 1\) (do y nguyên dương) nên \(x=50-2y\leq 48\)
Vậy \(x\in \left\{2;4;6;8;10;12;14;16;18;20;22;24;26;28;30;32;34;36;38;40;42;44;46;48\right\}\)
Tương ứng ta có \(y\in\left\{24;23;22;21;20;19;18;17;16;15;14;13;12;11;10;9;8;7;6;5;4;3;2;1\right\}\)
Vậy............
Ta có : \(\frac{x}{4}=\frac{y}{7}\)
\(\Rightarrow\frac{x^2}{16}=\frac{y^2}{49}=\frac{3x^2}{48}=\frac{4y^2}{196}=\frac{3x^2-4y^2}{48-196}=\frac{100}{-148}=-\frac{25}{37}\)
Thay vào là ra nhé !:D
Cái chỗ Nguyễn Quang Trung đúng ròi
\(\Rightarrow\hept{\begin{cases}\frac{x}{4}=-\frac{25}{37}\\\frac{y}{7}=-\frac{25}{37}\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{100}{37}\\y=-\frac{175}{37}\end{cases}}\)
Do \(\left(x-\frac{1}{3}\right)^{46}\ge0,\left(3-4y\right)^{100}\ge0,\left|z-5\right|\ge0\)nên \(\left(x-\frac{1}{3}\right)^{46}+\left(3-4y\right)^{100}+\left|z-5\right|\ge0\)
Để \(\left(x-\frac{1}{3}\right)^{46}+\left(3-4y\right)^{100}+\left|z-5\right|=0\)thì \(\hept{\begin{cases}x-\frac{1}{3}=0\\3-4y=0\\z-5=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{3}\\y=\frac{3}{4}\\z=5\end{cases}}}\)
\(x^2+y^2+\frac{8xy}{x+y}=16\)
\(\Leftrightarrow\left(x^2+y^2\right)\left(x+y\right)+8xy-16\left(x+y\right)=0\)
\(\Leftrightarrow\left(x^2+y^2\right)\left(x+y-4\right)+4x^2+4y^2+8xy-16\left(x+y\right)=0\)
\(\Leftrightarrow\left(x^2+y^2\right)\left(x+y-4\right)+4\left(x+y\right)^2-16\left(x+y\right)=0\)
\(\Leftrightarrow\left(x+y-4\right)\left(x^2+y^2+4x+4y\right)=0\)
\(\Leftrightarrow x+y-4=0\)(vì \(x^2+y^2+4x+4y>0\))
\(\Leftrightarrow y=4-x\).
\(Q=x^2-2x+4y+100=x^2-2x+4\left(4-x\right)+100\)
\(=x^2-6x+116=\left(x-3\right)^2+107\ge107\)
Dấu \(=\)khi \(x=3\Rightarrow y=1\).
Thiếu đề à cậu????