Làm giúp mình bài 1 với. Câu a là Chứng minh: tam giác KMP = tam giác PHK nha câu a ghi lộn á
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
c: Sửa đề: ME vuông góc AC
AD+DB=AB
AE+EC=AC
mà DB=EC và AB=AC
nên AD=AE
=>ΔADE cân tại A
![](https://rs.olm.vn/images/avt/0.png?1311)
) Ta có:
- AM là đường phân giác góc ABC nên ∠MAB = ∠MAC.
- MH vuông góc với BC nên ∠HMB = 90°.
- ∠BMA = ∠B + ∠MAB = ∠B + ∠MAC.
Vì ∠BMA = ∠HMB và ∠HBM = ∠BMA, nên tam giác ABM = tam giác HBM theo gốc.
b) Ta có:
- AM là đường phân giác của góc ABC nên ∠BAM = ∠MAC.
- MH vuông góc với BC nên ∠HMB = 90°.
- Ta có ∠HMA = ∠HMB + ∠BAM = 90° + ∠MAC.
Vì ∠HMA = 90° + ∠MAC và ∠AHM = 180° - ∠HMA, nên 180° - ∠AHM = 90° + ∠MAC. Do đó, ∠AHM = ∠MAC.
Vậy AK // HM.
c) Ta có:
- AK // HM (theo b).
- AM là đường phân giác của góc ABC nên ∠BAM = ∠MAC.
- HN là đường cao của tam giác ABM, nên ∠BNH = 90°.
- Ta có ∠ANH = ∠ANM + ∠MNH = ∠BAM + ∠BNH = ∠BAM + 90°.
Vì ∠ANH = ∠BAM + 90° và ∠HAN = 180° - ∠ANH, nên 180° - ∠HAN = ∠BAM + 90°. Do đó, ∠HAN = ∠BAM.
Vậy HN // AM.
![](https://rs.olm.vn/images/avt/0.png?1311)
4)
theo câu 2,ta có:\(\Delta ABM=\Delta CDM\left(g.cg\right)\)
\(\Rightarrow AB=CD\Rightarrow\frac{1}{2}AB=\frac{1}{2}CD=IB=BA=CK=KD\)
xét \(\Delta\) AIM và \(\Delta\)CKM có:
AI=CK(cmt)
AM=MC(gt)
góc IAM=góc MCK=\(90^o\)
=>\(\Delta AIM=\Delta CKM\left(c.g.c\right)\)
\(\Rightarrow\widehat{IMA}=\widehat{CMK}\) => M là giao điểm của IK và AC
=> I,M,K thẳng hàng