với mọi n thì 3^n+18 là hợp số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét n chẵn thì n^3+n+2 xẽ là số chẵn mà n thuộc vào N* nên n>0 =>n^3+n+2 >2 nên n^3+n+2 là hợp số.
Xét n lẻ thì n^3 là lẻ nên n^3+n là số chẵn => n^3+n+2 chẵn. Chứng minh như trên.
Có thể bạn ko cần phải chứng minh n^3+n là chẵn trong trường hợp trên nhưng chứng minh thì cũng ko thừa đâu.
Theo bài ra, ta có:
n3 + n + 2
= n(n2 + n) + 2.
+ Nếu n lẻ => n2 lẻ => n2 + n chẵn => n2 + n chia hết cho 2 => n(n2 + n) chia hết cho 2 => n(n2 + n) + 2 chia hết cho 2
Mà n(n2 + 2) + 2 lớn hơn 2 => n(n2 +n) + 2 là hợp số hay n3 + n + 2 là hợp số.
+ Nếu n chẵn => n chia hết cho 2 => n(n2 + n) chia hết cho 2 => n(n2 + n) + 2 chia hết cho 2.
Mà n(n2 + n) + 2 lớn hớn 2 => n(n2 + n) + 2 là hợp số hay n3 + n + 2 là hợp số.
Vậy n3 + n + 2 là hợp số với moi n thuộc N*
Cậu trên giải sai rồi, n3 +n + 2= n( n2 +1) +2 chứ sao bằng giống bạn trên được, nếu giống bạn trên thì n( n2 +n) +2 = n3 + n2 +2 rồi
n3 + n + 2
= n3 - n + 2n + 2
= n.(n2 - 1) + 2.(n + 1)
= n.(n - 1).(n + 1) + 2.(n + 1)
= (n + 1).(n2 - n + 2), có ít nhất 3 ước khác 1
=> n3 + n + 2 là hợp số với mọi n ϵ N* (đpcm)
Có: n3 + n + 2 = n(n2+1) + 2
- Nếu n lẻ => n2 lẻ => n2 + 1 chẵn => n2 + 1 chia hết cho 2 => n(n2+1) chia hết cho 2
Mà n(n2+1) + 2 > 2 => n(n2+1) + 2 là hợp số => n3 + n + 2 là hợp số (1)
- Nếu n chẵn => n(n2+1) chia hết cho 2 => n(n2+1) + 2 chia hết cho 2
Mà n(n2+1) + 2 > 2 => n(n2+1) + 2 là hợp số => n3 + n + 2 là hợp số (2)
Từ (1) và (2) => n3 + n + 3 là hợp số với mọi n \(\in\) N*
Ta có
n3 + n + 2 = (n + 1)(n2 - n + 2)
Ta thấy ( n + 1) > 1
n2 - n + 2 > 1
Vậy n3 + n + 2 luôn chia hết cho 2 số khác 1 nên nó là hợp số
Ta có :
n3 + n + 2 = ( n3 + 1 ) + ( n + 1 )
= ( n + 1 ) ( n2 - n + 1 ) + ( n + 1 )
= ( n + 1 ) ( n2 - n + 2 )
Ta thấy n + 1 > 1 ; n2 - n + 2 > 1 nên n3 + n + 2 là hợp số
Do n là số tự nhiên khác 0 =) n = 2k hoặc 2k + 1 với k là stn
(+) Nếu n = 2k =) n^3 + n + 2 = (2k)^3 + 2k + 2 chia hết cho 2 (1)
(+) Nếu n = 2k + 1 =) n^3 + n + 2 = lẻ + lẻ +chẵn = chẵn chia hết cho 2 (2)
Từ (1) và (2) ta có điều phải chứng minh
Ta có
\(n^3+n+2=\left(n^3+n^2\right)-\left(n^2+n\right)+\left(2n+2\right)\)
\(=n^2\left(n+1\right)-n\left(n+1\right)+2\left(n+1\right)=\left(n^2-n+2\right)\left(n+1\right)\)
=> n^3+n+2 là hợp số vì có nhiều hơn 2 ước
Đề sai nhé vì nếu n = 0 thì n3 + n + 2 = 2 là số nguyên tố nhé, n = 1 thì tổng đó = 3 cũng là số nguyên tố nhé
cái này lớp 6 cũng làm dc mak bạn.
Với n là số chẵn nên \(n^3+n\) là số chẵn suy ra \(n^3+n+2\) là số chẵn nên là hợp số vì n là số tự nhiên khác 0
Với n là số lẻ nên \(n^3\) là số lẻ nên \(n^3+n\) là số chẵn suy ra \(n^3+n+2\) là số chẵn nên là hợp số vì n là số tự nhiên khác 0
Vậy với mọi n là số tự nhiên khác 0 thì \(n^3+n+2\) là hợp số