tìm hai số thực x,y biết rằng : x/2 = y/5 và x2 + y5 =116
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo tính chất dãy tỉ số bằng nhau ta có:
Vậy x = -6; y = -15.
a) x= 10; y = 25
b) x + 2 y + 10 = 1 5 => ( x = 2).5 = ( y = 10).1=> 5.x + 10 = y + 10
=> 5.x = y mà y – 3.x = 2
Nên x = 1; y = 5
c) x = 20 ; y = 25
Ta có: (Nhân cả hai vế của đẳng thức với ).
TH1 : Nếu x = -2 ⇒ y = -5
TH2 : Nếu x = 2 ⇒ y = 5
Cách 2:
⇒ x = 2k; y = 5k.
Ta có: x.y = 10 ⇒ 2k.5k = 10 ⇒ 10k2 = 10 ⇒ k2 = 1 ⇒ k = 1 hoặc k = -1.
+ Nếu k = 1 thì x = 2k = 2; y = 5k = 5.
+ Nếu k = -1 thì x = 2k = -2; y = 5k = -5.
Vậy x = 2 ; y = 5 hoặc x = -2; y = -5.
a) x + y = 10 ⇒ y = 10 − x ⇒ 3 x = 2 ( 10 − x ) ⇒ x = 4 ⇒ y = 6
b) y − x = − 4 ⇒ y = x − 4 ⇒ x − 2 x − 4 + 3 = 8 12 ⇒ x − 2 x − 1 = 8 12 ⇒ 12 x − 24 = 8 x − 8 ⇒ x = 4 ⇒ y = 0
c) x + 2 y = 12 ⇒ x = 12 − 2 y ⇒ 12 − 2 y 2 = y 5 ⇒ 60 − 10 y = 2 y ⇒ y = 5 ⇒ x = 2
Ta có x2=y3\(\Rightarrow\) x/3=y/2;y5=z6\(\Rightarrow\) y/6=z/5 x/3=y/2\(\Rightarrow\) 1/3.x/3=1/3.y/2\(\Rightarrow\) x/9=y/6 (1) và y/6=z/5 (2). Từ (1) và (2)\(\Rightarrow\)x/9=y/6=z/5 \(\Rightarrow\) x^2/81=y^2/36=z^2/25=(x^2+y^2-z^2)/(81+36-25)=92/92=1 \(\Rightarrow\) x=9 hoặc -9 y=6 hoặc -6 và z=5 hoặc -5
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{45}{7}\)
Do đó: x=90/7; y=225/7
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{45}{7}\)
Khi đó:
\(\dfrac{x}{2}=\dfrac{45}{7}\Rightarrow x=\dfrac{45}{7}.2=\dfrac{90}{7}\)
\(\dfrac{y}{5}=\dfrac{45}{7}\Rightarrow y=\dfrac{45}{7}.5=\dfrac{225}{7}\)