Tìm hai số tự nhiên a và b(a>b) biết rằng:a=b =128 và UWCLN(a,b)=16
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Muốn chia hết cho 12 thì cũng phải chia hết cho 3 và 4
Muốn chia hết cho thì 2 chữ số tận cùng phải chia hết cho 4
Muốn chia hết cho 3 thì tổng các chữ số chia hết cho 3
Ta có các trường hợp số b là : 2 ; 6
Nếu b = 2 => 4a12 chia hết cho 3 = ( 4 + a + 1 + 2 ) : 3 => a = 2 hoặc 5 ; 8
Nếu b = 6 => 4a16 Chia hết cho 3 = ( 4 + a + 1 + 6 ) : 3 => a = 1 hoặc 4 ; 7
Vậy các số đó là : 4212; 4512 ; 4812 ; 4116 ; 4416 ; 4716
Chia hết cho 12 là chia hết cho 3 và 4
Để 4a1b chia hết cho 4 thì b = 2 ; 6
Nếu b = 2 thì 4a12 phải chia hết cho 3 => a = 2 ; 5 ; 8
Nếu b = 6 thì 4a16 phải chia hết cho 3 => a = 1 ; 4 ; 7
Gọi a=mx16 b=nx16 (m;n thuộc tập hợp số tự nhiên;m>n va ƯCLN(m;n)=1)
Ta có : a+b=128<=>mx16+nx16=128=>16x(m+n)=128
m+n=128:16=8
vì ƯCLN(m;n)=1=>m và n là 2 số nguyên tố .Phân tích 8 thành tổng của 2 số hạng ta được
8=0+8=1+7=2+6=3+5=4+4
Vì a;b là số nguyên tố =>a=5 va b=3 theo điều kiện a>b
Đáp số : a=5
b=3
a+b=128
ƯCLN (a,b)=16
ta có : 128:16=8
\(\frac{a}{16}+\frac{b}{16}=8\)
\(\frac{a+b}{16}=8\)
Phân tích 8 thành tổng của 2 số tự nhiên ta được :
8=5+3=1+7=2+6=0+8=4+4
Mà 3 x 16 + 5 x 16 = 48 + 80 =128
Nên a = 48
b=80
thõa mãn điều kiện
Do ƯCLN(a; b)=16 => a = 16.m; b = 16.n [(m;n)=1; (m > n)]
Ta có: 16.m + 16.n = 128
=> 16.(m + n) = 128
=> m + n = 128 : 16 = 8
Mà m > n; (m;n)=1 => m = 7; n = 1 hoặc m = 5; n = 3
+ Với m = 7; n = 1 thì a = 16.7 = 112; b = 16.1 = 16
+ Với m = 5; n = 3 thì a = 16.5 = 80; b = 16.3 = 48
Vậy các cặp số (a;b) thỏa mãn đề bài là: (112;16) ; (80;48)
UCLN (a,b) - 6 nên a = 6a', b = 6b' và UCLN (a,b) = 1.
Theo đề bài a'b' = 63 =3.3.7
Do a > b nên a'>b'.' Chọn 2 số a' và b' có tích = 63, nguyên tố cùng nhau. a' > b' ta được.
a' | 63 | 9 |
b' | 1 | 7 |
Do đó.
a | 387 | 54 |
b | 6 | 42 |
Ta có a + b = 224 (gt)
a và b chia hết cho 28 (gt)
a > b (gt)
Có số phần bằng nhau : 224 : 28 = 8 (phần)
+ Nếu a = 5 phần thì b = 3 phần => a = 28 x 5 = 140 ; b = 28 x 3 = 84
+ Nếu a = 6 phần thì b = 2 phần => a = 28 x 6 = 168 ; b = 28 x 2 = 56
+ Nếu a = 7 phần thì b = 1 phần => a = 28 x 7 = 196 ; b = 28 x 1 = 28
Vậy nếu a lần lượt = 140;168;196 thì b lần lượt = 84;56;28
ƯCLN(a,b)=16
=>\(\left\{{}\begin{matrix}a=16k\\b=16f\end{matrix}\right.\)
a+b=128
=>16k+16f=128
=>k+f=128/16=8
a>b nên 16k>16f
=>k>f
mà k+f=8
nên \(\left(k,f\right)\in\left\{\left(7;1\right);\left(6;2\right);\left(5;3\right)\right\}\)
=>\(\left(a,b\right)\in\left\{\left(112;16\right);\left(96;32\right);\left(80;48\right)\right\}\)
mà ƯCLN(a,b)=16
nên \(\left(a,b\right)\in\left\{\left(112;16\right);\left(80;48\right)\right\}\)
Có : a . b = BCNN(a,b) . ƯCLN(a,b)
=> a . b = 336 . 12 = 4032
Vì ƯCLN(a,b) = 12 nên ta có : a = 12k ; b = 12l ( k, l nguyên tố cùng nhau)
Lại có : a>b nên k > l
=> 12k . 12l = 4032
144 . k . l = 4032
=> k . l = 28 => k;l \(\in\)Ư(28) = { 1;2;4;7;14;28 }
Ta có bảng :
k | 7 | 28 |
l | 4 | 1 |
a =12k | 84 | 336 |
b =12l | 48 | 12 |
Vậy...
THAM KHẢO BÀI LÀM CỦA CÁC BẠN:
Câu hỏi của Cặp đôi ngọt ngào - Toán lớp 6 - Học toán với OnlineMath
Đặt : a = 16x và b = 18y
Ta có : 16 ( x + y ) = 128
=> x + y = 8
=> x = 7 và y = 1
Vì a > b nên ta có a = 16x = 16.7 = 112
b = 128 - 112 = 16
Vậy ...
Vì ƯCLN(a, b) = 16 => ta gọi a = 16n, b = 16m.
16n + 16m = 128
=> 16(m + n) = 128
=> n + m = 128 : 16 = 8
8 = 0 + 8 = 1 + 7 = 2 + 6 = 3 + 5 = 4 + 4
Vì a > b => n > m => n có thể bằng 8; 7; 6; 5
m có thể bằng 0; 1; 2; 3
Vì a > b => loại bỏ trường hợp 4 + 4
=> (a; b) lần lượt là (128; 0) , (112; 16) ; (96; 32) ; (80; 48)