Rút gọn tổng sau:
S=2^0+2^1+2^2+2^3+..................+2^1998+2^1999
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(1+2+3+...+100\right).\left(1^2+2^2+3^3+...+100^2\right).\left(65.111-13.15.37\right)\)
\(=\left(1+2+3+...+100\right).\left(1^2+2^2+3^3+...+100^2\right).\left(7215-7215\right)\)
\(=\left(1+2+3+...+100\right).\left(1^2+2^2+3^3+...+100^2\right).0\)
\(=0\)
\(1999.1999.1998-1998.1998.1999\)
\(=1999.1998.\left(1999-1998\right)\)
\(=1999.1998.1\)
Tham khảo nhé~
1, S1 = (-2) + (-2) +..+ (-2).
Có SS (-2) là :
(1997 - 1) : 4 +1 = 500 (số ).
Tổng số (-2) là: 500 x (-2) = (-1000)
Bạn chờ mình làm tiếp nha
Các bạn ơi làm giúp mình vs ạ,mình đang cần gấp lắm rồi!!!!HELP MEEEEEEEEEEEEEE
Số số hạng của tổng trên là :
(1999 -1) : 1 + 1 = 1999 (số hạng)
Tổng trên là :
(1999 + 1) x 1999 : 2 = 1999000.
Vậy : 1+2+3+...+1998+1999 = 1999000 .
Chúc bạn học tốt !
1 + 2 + 3 + ... + 1998 + 1999 = 2 1999. 1999 + 1 = 1999000
Số lượng số hạng của S:
(1999-1): 1 + 1 = 1999 (số hạng)
Tổng S bằng:
(1999+1):2 x 1999 = 1 999 000
Đáp số: 1 999 000
Số lượng số hạng là:
\(\left(1999-1\right):1+1=1999\) (số hạng)
Tổng của S là:
\(\left(1999+1\right)\times1999:2=1999000\)
Đáp số: 1999000
1) Có nhận xét sau:
\(\frac{1}{a\sqrt{a+1}+\left(a+1\right)\sqrt{a}}=\frac{1}{\sqrt{a^2+a}\left(\sqrt{a}+\sqrt{a+1}\right)}=\frac{\sqrt{a+1}-\sqrt{a}}{\sqrt{a^2+a}}\)
\(=\frac{1}{\sqrt{a}}-\frac{1}{\sqrt{a+1}}.\)Do đó biểu thức có giá trị bằng: \(\frac{1}{1}-\frac{1}{\sqrt{2}}+..-\frac{1}{\sqrt{1999}}=1-\frac{1}{\sqrt{1999}}.\)
2) Có nhận xét sau:
\(\frac{1}{\sqrt{a}+\sqrt{a+1}}=\frac{\sqrt{a+1}-\sqrt{a}}{\left(\sqrt{a}+\sqrt{a+1}\right)\left(\sqrt{a+1}-\sqrt{a}\right)}=\sqrt{a+1}-\sqrt{a}.\) Thay vào biểu thức ta được biểu thức
có giá trị bằng: \(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{1999}-\sqrt{1998}=\sqrt{1999}-1.\)
Bạn áp dụng \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n}+\sqrt{n+1}\right)}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)với n = 1, 2 , 3 , ... , 1999
\(A=2^0+2^1+2^2\)\(+2^3+...+\)\(2^{50}\)
\(2A=2+2^2+2^3+...+2^{51}\)
\(2A-A=A=2^{51}-2^0\)
\(B=5+5^2+5^3+...+5^{99}+5^{100}\)
\(5B=5^2+5^3+5^4+...+5^{100}+5^{101}\)
\(5B-B=4B=5^{101}-5\)
\(B=\frac{5^{101}-5}{4}\)
\(C=3-3^2+3^3-3^4+...+\)\(3^{2007}-3^{2008}+3^{2009}-3^{2010}\)
\(3C=3^2-3^3+3^4-3^5+...-3^{2008}+3^{2009}-3^{2010}+3^{2011}\)
\(3C+C=4C=3^{2011}+3\)
\(C=\frac{3^{2011}+3}{4}\)
\(S_{100}=5+5\times9+5\times9^2+5\times9^3+...+5\times9^{99}\)
\(S_{100}=5\times\left(1+9+9^2+9^3+...+9^{99}\right)\)
\(9S_{100}=5\times\left(9+9^2+9^3+...+9^{99}+9^{100}\right)\)
\(9S_{100}-S_{100}=8S_{100}=5\times\left(9^{100}-1\right)\)
\(S_{100}=\frac{5\times\left(9^{100}-1\right)}{8}\)
A=20+21+22+23+...++23+...+250250
2�=2+22+23+...+2512A=2+22+23+...+251
2�−�=�=251−202A−A=A=251−20
�=5+52+53+...+599+5100B=5+52+53+...+599+5100
5�=52+53+54+...+5100+51015B=52+53+54+...+5100+5101
5�−�=4�=5101−55B−B=4B=5101−5
�=5101−54B=45101−5
�=3−32+33−34+...+C=3−32+33−34+...+32007−32008+32009−3201032007−32008+32009−32010
3�=32−33+34−35+...−32008+32009−32010+320113C=32−33+34−35+...−32008+32009−32010+32011
3�+�=4�=32011+33C+C=4C=32011+3
�=32011+34C=432011+3
�100=5+5×9+5×92+5×93+...+5×999S100=5+5×9+5×92+5×93+...+5×999
�100=5×(1+9+92+93+...+999)S100=5×(1+9+92+93+...+999)
9�100=5×(9+92+93+...+999+9100)9S100=5×(9+92+93+...+999+9100)
9�100−�100=8�100=5×(9100−1)9S100−S100=8S100=5×(9100−1)
�100=5×(9100−1)8S100=85×(9100−1)