Chứng tỏ rằng : 3^1+3^2+3^3+......+3^2009+3^2010
Giúp mình với,mình cần câu trả lời gấp !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì 1/6<1/5;1/7<1/5:1/8<1/5;1/9<1/5
=>1/5+1/6+1/7+1/8+1/9<1/5.2=1(1)
Vậy 1/5+1/6+1/7+1/8+1/9<1
Lại có: 1/10<1/8;1/11<1/8;1/12<1/8;1/13<1/18;1/14<1/8;1/15<1/8;1/16<1/8;1/17<1/8
=>1/10+1/11+1/12+1/13+1/14+1/15+1/16+1/17<1/8.8=1
Vậy 1/10+1/11+1/12+1/13+1/14+1/15+1/16+1/17<1(2)
Từ (1) và (2)
=>1/5+1/6+1/7+...+1/17<2
Vậy 1/5+1/6+1/7+...+1/17<2
\(1-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-...-\frac{1}{2009^2}\)
\(=1-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2009^2}\right)\)
\(>1-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2008.2009}\right)\)
\(=1-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2008}-\frac{1}{2009}\right)\)
\(=1-\left(1-\frac{1}{2009}\right)\)
\(=\frac{1}{2009}\)
a)M = 1 + 3 + 32 +....+ 3118 + 3119
M = (1 + 3 + 32)+(33+34+35)+...+(3117+3118+3119)
M = 1x(1+3+9)+33x(1+3+9)+...+3117x(1+3+9)
M = 1x13+33x13+...+3117x13
M = 13x(1+33+...+3117)
Vậy M chia hết cho 13
) A= (1 + 3 + 32) + ( 33 + 34 + 35) + ... + (39 + 310 + 311)
= (1 + 3 + 32) + 32(1 + 3 + 32) + ... + 39(1 + 3 + 32)
= (1 + 3 + 32)(1 + 32 + ... + 39)
= 13(1 + 32 + ... + 39) chia hết 13
\(Y=1+3+3^2+3^3+.......+3^{98}\)
\(=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+.........+\left(3^{96}+3^{97}+3^{98}\right)\)
\(=\left(1+3+3^2\right)+3^3.\left(1+3+3^2\right)+......+3^{96}.\left(1+3+3^2\right)\)
\(=\left(1+3+9\right)+3^3.\left(1+3+9\right)+.........+3^{96}.\left(1+3+9\right)\)
\(=13+3^3.13+.......+3^{96}.13\)
\(=13.\left(1+3^3+.......+3^{96}\right)⋮13\)( đpcm )
Y = 1 + 3 + 32 + 33 + ... + 398
= ( 1 + 3 + 32 ) + ( 33 + 34 + 35 ) + ... + ( 396 + 397 + 398 )
= 13 + 33( 1 + 3 + 32 ) + ... + 396( 1 + 3 + 32 )
= 13 + 33.13 + ... + 396.13
= 13( 1 + 33 + ... + 396 ) chia hết cho 13 ( đpcm )
1: \(A=6^{2020}\left(1+6\right)+6^{2022}\left(1+6\right)\)
\(=7\left(6^{2020}+6^{2022}\right)⋮7\)
Bài 1:
$A=6^{2020}(1+6+6^2+6^3)=6^{2020}.259=6^{2020}.7.37\vdots 7$
Ta có đpcm.