Tìm số tự nhiên n thỏa mãn
1/n + 2020/2019 = 2019/2018 + 1: 1+n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
15.B
16.C
17.A
18.D
19.A
còn câu 20,21 mình sợ mình làm sai nên k ghi đáp án sorry bạn nha:(
\(\frac{3}{n-2018}+\frac{2}{n-2019}+\frac{1}{n-2020}=3\)
\(\Leftrightarrow\frac{3}{n-2018}-1+\frac{2}{n-2019}-1+\frac{1}{n-2020}-1=0\)
\(\Leftrightarrow\frac{3-\left(n-2018\right)}{n-2018}+\frac{2-\left(n-2019\right)}{n-2019}+\frac{1-\left(n-2020\right)}{n-2020}=0\)
\(\Leftrightarrow\frac{2021-n}{n-2018}+\frac{2021-n}{n-2019}+\frac{2021-n}{n-2020}=0\)
\(\Leftrightarrow\left(2021-n\right)\left(\frac{1}{n-2018}+\frac{1}{n-2019}+\frac{1}{n-2020}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2021-n=0\left(1\right)\\\frac{1}{n-2018}+\frac{1}{n-2019}+\frac{1}{n-2020}=0\left(2\right)\end{cases}}\)
Giải \(\left(1\right)\Leftrightarrow n=2021\).
Giải \(\left(2\right)\):
- Với \(n< 2018\)thì: \(\frac{1}{n-2018}< 0,\frac{1}{n-2019}< 0,\frac{1}{n-2020}< 0\)nên phương trình vô nghiệm.
- Với \(n=2018,n=2019,n=2020\)không thỏa điều kiện xác định.
- Với \(n>2020\)thì \(\frac{1}{n-2018}>0,\frac{1}{n-2019}>0,\frac{1}{n-2020}>0\) nên phương trình vô nghiệm.
Ta có : \(\frac{1}{n}+\frac{2020}{2019}=\frac{2019}{2018}+\frac{1}{n+1}\)
=> \(\frac{1}{n}-\frac{1}{n+1}=\frac{2019}{2018}-\frac{2020}{2019}\)
=> \(\frac{n+1}{n\left(n+1\right)}-\frac{n}{\left(n+1\right)n}=\frac{1}{4074342}\)
=> \(\frac{1}{n\left(n+1\right)}=\frac{1}{2018.2019}\)
=> n(n + 1) = 2018.2019
=> n(n + 1) = 2018.(2018 + 1)
=> n = 2018
Nhận xét : ( x + y - 3 )^2018 >=0 và 2018.(2x-4)^2020 >= 0
=> (x+y-3)^2018 + 2018.(2x-4)^2020 >=0
Dấu = xảy ra khi : x + y - 3 = 0 và 2x - 4 = 0 => x = 2 và y = 1
Thay vào bt S :
S = ( 2 - 1)^2019 + (2-1)^2019
= 1^2019 + 1^2019 = 2
a)\(M=\frac{2019\times2020-2}{2018+2018\times2020}=\frac{2019\times2020-2}{2018+2018\times2020+2020-2020}=\frac{2019\times2020-2}{\left(2018+1\right)\times2020+2018-2020}=\frac{2019\times2020-2}{2019\times2020-2}=1\\ N=\frac{-2019\times20202020}{20192019\times2020}=\frac{-2019\times10001\times2020}{2019\times10001\times2020}=-1\)
b)\(5\left|x-1\right|=3M-2N=5\\ \left|x-1\right|=1\Rightarrow\hept{\begin{cases}x-1=1\Rightarrow x=2\\x-1=-1\Rightarrow x=0\end{cases}}\)
a) \(2\left(\dfrac{2}{3.5}+\dfrac{4}{5.9}+...+\dfrac{16}{n\left(n+16\right)}\right)=\dfrac{16}{25}\)
\(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+...+\dfrac{1}{n}-\dfrac{1}{n+16}=\dfrac{8}{25}\)
\(\dfrac{1}{3}-\dfrac{1}{n+16}=\dfrac{8}{25}\)
\(\dfrac{n+13}{3\left(n+16\right)}=\dfrac{8}{25}\)
\(24n+384=25n+325\)
\(25n-24n=384-325\)
\(n=59\)
\(\text{Giải}\)
\(\text{Ta có:}\)
\(n+\left(n+1\right)+\left(n+2\right)+....+2017+2018+2019=2019\)
\(\Leftrightarrow n+\left(n+1\right)+\left(n+2\right)+...+2017+2018=0\)
\(\Leftrightarrow\left(2018+n\right)\left(2018-n+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2018+n=0\Leftrightarrow n=-2018\\2018-n+1=0\Leftrightarrow2019-n=0\Leftrightarrow n=2019\end{cases}}\)
\(\text{Vậy: n=-2018 hoặc: n=2019}\)