Tìm số nguyên x để 4(x+2) chia hết cho x+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3x+12=2x-4
3x-2x=-4-12
1x=-16
x=-16:1 =>x=-16
14-3x=x+4
-3x-x=4-14
-4x=-10
x=-10:-4 =>x=-10/-4
2(x-2)+7=x-25
2x-4+7=x-25
2x-x=-25+4-7
2x=-28
x=-28;2 =>x=-14
|a+3|=-3
a+3=-3 hoặc a+3=3
a=-6 hoặc a=0
tìm x thì dễ rồi , mình làm tìm n nhá
a, ta có n+5=n-1+6
mà n-1 chia hết cho n-1
suy ra để n là số nguyên thì 6 chia hết cho n
suy ra n là ước của 6 ={
±1;
|
(a) \(f\left(x\right)⋮g\left(x\right)\Rightarrow\dfrac{x^2-5x+9}{x-3}\in Z\)
Ta có: \(\dfrac{x^2-5x+9}{x-3}\left(x\ne3\right)=\dfrac{x\left(x-3\right)-2\left(x-3\right)+3}{x-3}=x-2+\dfrac{3}{x-3}\)nguyên khi và chỉ khi: \(\left(x-3\right)\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow\left[{}\begin{matrix}x-3=1\\x-3=-1\\x-3=3\\x-3=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=2\\x=6\\x=0\end{matrix}\right.\) (thỏa mãn).
Vậy: \(x\in\left\{0;2;4;6\right\}\).
(b) \(f\left(x\right)⋮g\left(x\right)\Rightarrow\dfrac{2x^3-x^2+6x+2}{2x-1}\in Z\left(x\ne\dfrac{1}{2}\right)\)
Ta có: \(\dfrac{2x^3-x^2+6x+2}{2x-1}=\dfrac{x^2\left(2x-1\right)+3\left(2x-1\right)+5}{2x-1}=x^2+3+\dfrac{5}{2x-1}\)
nguyên khi và chỉ khi: \(\left(2x-1\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Rightarrow\left[{}\begin{matrix}2x-1=1\\2x-1=-1\\2x-1=5\\2x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=0\\x=3\\x=-2\end{matrix}\right.\) (thỏa mãn).
Vậy: \(x\in\left\{-2;0;1;3\right\}\).
a: f(x) chia hết cho g(x)
=>x^2-3x-2x+6+3 chia hết cho x-3
=>3 chia hết cho x-3
=>x-3 thuộc {1;-1;3;-3}
=>x thuộc {4;2;6;0}
b: f(x) chia hết cho g(x)
=>2x^3-x^2+6x-3+5 chia hết cho 2x-1
=>5 chia hết cho 2x-1
=>2x-1 thuộc {1;-1;5;-5}
=>x thuộc {2;0;3;-2}
x^4 -x ^3 + 6x^2 - x + n x^2-x+5 x^2+1 - x^4-x^3+5x^2 x^2-x+n - x^2-x+n 0
ĐỂ x4 - x3 + 6x2 -x \(⋮x^2-x+5\)
\(\Rightarrow x-5=0\Rightarrow x=5\)
b , ta có : \(3x^3+10x^2-5⋮3x+1\)
\(\Rightarrow3x^3+x^2+9x^2+3x-3x-1-4⋮3x+1\)
\(\Rightarrow x\left(3x+1\right)+3x\left(3x+1\right)-\left(3x+1\right)-4⋮3x+1\)
mà : \(\left(3x+1\right)\left(4x-1\right)⋮3x+1\)
\(\Rightarrow4⋮3x+1\Rightarrow3x+1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Nếu : 3x + 1 = 1 => x = 0 ( TM )
3x + 1 = -1 => x = -2/3 ( loại )
3x + 1 = 2 => x = 1/3 ( loại )
3x + 1 = -2 => x = -1 ( TM )
3x + 1 = 4 => x = 1 ( TM )
3x + 1 = -1 => x = -5/3 ( loại )
\(\Rightarrow x\in\left\{0;\pm1\right\}\)
1 \(⋮\)x-1
=>x-1\(\in\)Ư(1)={-1;1}
Ta có bảng:
x-1 | -1 | 1 |
x | 1\(\in\)Z | 2\(\in\)Z |
Vậy các số nguyên x \(\in\){0;2}
b)2\(⋮\)x
=>x\(\in\)Ư(2)={-1;-2;1;2}
Vậy x\(\in\){-1;-2;1;2}
Chúc bn học tốt
Bài giải
a, Ta có :
\(1⋮\left(x-1\right)\text{ }\Rightarrow\text{ }x-1\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\Rightarrow\orbr{\begin{cases}x-1=-1\\x-1=1\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
\(\Rightarrow\text{ }x\in\left\{0\text{ ; }2\right\}\)
b, \(2\text{ }⋮\text{ }x\)
\(\Rightarrow\text{ }x\inƯ\left(2\right)=\left\{\pm1\text{ ; }\pm2\right\}\)
Vậy \(x\in\left\{\pm1\text{ ; }\pm2\right\}\)
Bài 1:
a: \(\Leftrightarrow x-1\in\left\{1;-1;3;-3\right\}\)
hay \(x\in\left\{2;0;4;-2\right\}\)
4(x+2) chia het cho x+1
=>4x+8 chia het cho x+1
=>4(x+1)+4 chia het cho x+1
Mà 4(x+1) chia het cho x+1
=>4 chia het cho x+1
=>x+1 E Ư(4)={-4;-2;-1;1;2;4}
=>x E {-5;-3;-2;0;1;3}