K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2021

a) tam giác AEB vuông tại E có EH là đường cao \(\Rightarrow BH.BA=BE^2\)

tam giác CEB vuông tại E có EK là đường cao \(\Rightarrow BK.BC=BE^2\)

\(\Rightarrow BH.BA=BK.BC\)

b) \(BH.BA=BK.BC\Rightarrow\dfrac{BH}{BC}=\dfrac{BK}{BA}\)

Xét \(\Delta BHK\) và \(\Delta BCA:\) Ta có: \(\left\{{}\begin{matrix}\angle ABCchung\\\dfrac{BH}{BC}=\dfrac{BK}{BA}\end{matrix}\right.\)

\(\Rightarrow\Delta BHK\sim\Delta BCA\left(c-g-c\right)\)

b) \(\Delta BHK\sim\Delta BCA\Rightarrow\angle BHK=\angle BCA\)

Kẻ \(ED\bot CF\) 

Vì \(\angle EHF=\angle EDF=\angle HFD=90\Rightarrow EHFD\) là hình chữ nhật

\(\Rightarrow HD\) và EF cắt nhau tại trung điểm I của mỗi đường

Vì \(\Delta EHF\) vuông tại H có I là trung điểm EF 

\(\Rightarrow\angle FHI=\angle HFI=\angle AFE\left(1\right)\)

Xét \(\Delta AFC\) và \(\Delta AEB:\) Ta có: \(\left\{{}\begin{matrix}\angle BACchung\\\angle AFC=\angle AEB=90\end{matrix}\right.\)

\(\Rightarrow\Delta AFC\sim\Delta AEB\left(g-g\right)\Rightarrow\dfrac{AF}{AE}=\dfrac{AC}{AB}\Rightarrow\dfrac{AF}{AC}=\dfrac{AE}{AB}\)

Xét \(\Delta AEF\) và \(\Delta ABC:\) Ta có: \(\left\{{}\begin{matrix}\angle BACchung\\\dfrac{AF}{AC}=\dfrac{AE}{AB}\end{matrix}\right.\)

\(\Rightarrow\Delta AEF\sim\Delta ABC\left(c-g-c\right)\Rightarrow\angle AFE=\angle ACB\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\angle FHI=\angle ACB=\angle BHK\Rightarrow\angle BHD=BHK\)

\(\Rightarrow H,D,K\) thẳng hàng \(\Rightarrow H,I,K\) thẳng hàng

undefined

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔBEA vuông tại E có EH là đường cao ứng với cạnh huyền AB, ta được:

\(BH\cdot BA=BE^2\)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔBEC vuông tại E có EK là đường cao ứng với cạnh huyền AC, ta được:

\(BK\cdot BC=BE^2\)(2)

Từ (1) và (2) suy ra \(BH\cdot BA=BK\cdot BC\)

b) Xét ΔBHK và ΔBCA có 

\(\dfrac{BH}{BC}=\dfrac{BK}{BA}\)(cmt)

\(\widehat{HBK}\) chung

Do đó: ΔBHK\(\sim\)ΔBCA(c-g-c)

27 tháng 7 2023

Để chia đều số người trong mỗi phân xưởng vào các tổ thì số người ở các tổ là ước chung của 99 và 72

Ta có:

99 = 3² . 11

72 = 2³ . 3²

ƯCLN(99; 72) = 3² = 9

ƯC(99; 72) = {1; 3; 9}

Vậy có 3 cách chia tổ

Cho  hình  thang  𝐴𝐵𝐶𝐷 (𝐴𝐷//𝐵𝐶)  có  đáy  lớn  𝐵𝐶 = 𝐴𝐵 +  𝐶𝐷. Đường phân giác trong  𝐴̂, 𝐵̂ cắt nhau tại  𝐸;  đường phân giác trong  𝐶̂, 𝐷̂ cắt  nhau ở  𝐹.  Đường phân giác ngoài 𝐴̂, 𝐵̂ cắt nhau  ở  𝐼;  đường phân giác ngoài của 𝐶̂, 𝐷̂ cắt nhau  ở  𝐽.  Đường thẳng 𝐴𝐸, 𝐴𝐼, 𝐶𝐽  cắt  đường thẳng  𝐵𝐶 ...
Đọc tiếp

Cho  hình  thang  𝐴𝐵𝐶𝐷 (𝐴𝐷//𝐵𝐶)  có  đáy  lớn  𝐵𝐶 = 𝐴𝐵 +  𝐶𝐷. 
Đường phân giác trong  𝐴̂, 𝐵̂ cắt nhau tại  𝐸;  đường phân giác trong  𝐶̂, 𝐷̂ cắt  nhau ở  𝐹.  Đường phân giác ngoài 𝐴̂, 𝐵̂ cắt nhau  ở  𝐼;  đường phân giác ngoài của 𝐶̂, 𝐷̂ cắt nhau  ở  𝐽.  Đường thẳng 𝐴𝐸, 𝐴𝐼, 𝐶𝐽  cắt  đường thẳng  𝐵𝐶  ở  𝐾, 𝑀, 𝑁. Gọi 𝐻, 𝐺 là trung điểm của 𝐴𝐵, 𝐶𝐷.

a)  Chứng minh rằng ∆𝐴𝐵𝐾 cân và 𝐸 là trung điểm 𝐴𝐾.
b)  Chứng minh rằng 𝐷𝐹 ⊥ 𝐶𝐹 và 𝐷, 𝐹, 𝐾 thẳng hàng.
c)  Chứng minh rằng 𝐼 là trung điểm 𝐴𝑀, 𝐽 là trung điểm 𝐷𝑁.
d)  Chứng minh rằng 𝐼, 𝐺, 𝐸, 𝐹, 𝐻, 𝐽 thẳng hàng.

0

a: Xét tứ giác BHCD có 

CH//BD

BH//CD

Do đó: BHCD là hình bình hành

18 tháng 12 2021

???????????????????????