b)Tính gọn:1-3+3^2-3^3+...+3^98-3^99
a)TÌM x,y thuộc Z biết :!x+10!+!y-15!=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x+2).(y-3)=-3=-1.3=1.(-3)
Vì x,y thuộc Z nên ( x+2) và (y+3) thuộc Z
Ta có bảng:
x+2 | -1 | 1 | -3 | 3 |
y+3 | 3 | -3 | 1 | -1 |
x | -3 | -1 | -5 | 1 |
y | 0 | -6 | -2 | -4 |
Vậy nếu x = - 3 thì y = 0
nếu x = -1 thì y =- 6
nếu x = - 5 thì y = - 2
nếu x = 1 thì y = - 4
1 - 2 + 3 - 4 + 5 - 6 + ......... + 159 - 160 ( có 160 số )
= - 1 + ( - 1 ) + ( - 1 ) + .......... + ( - 1 ) ( có 80 số - 1 )
= - 1 . 80
= - 80
bài 2: (x-3).(y+2) = -5
Vì x, y \(\in\)Z => x-3 \(\in\)Ư(-5) = {5;-5;1;-1}
Ta có bảng:
x-3 | 5 | -5 | -1 | 1 |
y+2 | 1 | -1 | -5 | 5 |
x | 8 | -2 | 2 | 4 |
y | -1 | -3 | -7 | 3 |
bài 3: a(a+2)<0
TH1 : \(\orbr{\begin{cases}a< 0\\a+2>0\end{cases}}\)=>\(\orbr{\begin{cases}a< 0\\a>-2\end{cases}}\)=> -2<a<0 ( TM)
TH2: \(\orbr{\begin{cases}a>0\\a+2< 0\end{cases}}\Rightarrow\orbr{\begin{cases}a>0\\a< -2\end{cases}}\Rightarrow loại\)
Vậy -2<a<0
Bài 5: \(\left(x^2-1\right)\left(x^2-4\right)< 0\)
TH 1 : \(\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>1\\x< 2\end{cases}}\)\(\Rightarrow\)1 < a < 2
TH 2: \(\hept{\begin{cases}x^2-1< 0\\x^2-4>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2< 1\\x^2>4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< 1\\x>2\end{cases}}\)\(\Rightarrow\)loại
Vậy 1<a<2
\(\left(x+4\right)^2-81=0\Leftrightarrow\left(x+4\right)^2-9^2=0\)
\(\Leftrightarrow\left(x+4+9\right)\times\left(x+4-9\right)=0\)
\(\Leftrightarrow\left(x+13\right)\times\left(x-5\right)=0\)
\(\left[{}\begin{matrix}x+13=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-13\\x=5\end{matrix}\right.\)
(x+1)+(x+3)+...+(x+99)=0
Tổng các số hạng là: (99+1):2=50 (số hạng)
=> (x+1)+(x+3)+...+(x+99)=0 <=> 50.x+(1+3+5+...+99) = 0
<=> 50.x+\frac{\left(99+1\right).50}{2}2(99+1).50=0 <=> 50.x+2500=0 => x=-2500/50=-50
a) (3x+1 + 3x) : 2 = 18
3x.(3+1) = 36
3x = 9 = 32
=> x= 2
b) (x+3)2 + (y-5)2 = 0
mà \(\left(x+3\right)^2\ge0;\left(y-5\right)^2\ge0.\)
=> x = - 3; y = 5