giải hệ phương trình :
\(\left\{{}\begin{matrix}x^2+y^2=30\\x+y=6\end{matrix}\right.\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\Leftrightarrow\left\{{}\begin{matrix}x=y+5\\2y+10+y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{16}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\\ 2,\Leftrightarrow\left\{{}\begin{matrix}3x=1-2y\\1-2y+y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\\ 3,\Leftrightarrow\left\{{}\begin{matrix}x=y+2\\3y+6+2y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy+6x-3y-18=xy\\xy-2x+2y-4=xy\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}6x-3y=18\\-2x+2y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-y=6\\-x+y=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=10\end{matrix}\right.\)
a, Đặt \(\hept{\begin{cases}\frac{1}{x}=u\\\frac{1}{y}=v\end{cases}}\left(u;v\ne0\right)\)
\(\Leftrightarrow\hept{\begin{cases}u+v=\frac{5}{6}\\\frac{1}{6}u+\frac{1}{5}v=\frac{3}{20}\end{cases}}\Leftrightarrow\hept{\begin{cases}u=\frac{5}{6}-v\left(1\right)\\\frac{1}{6}u+\frac{1}{5}v=\frac{3}{20}\left(2\right)\end{cases}}\)
Thay (1) vào (2) ta được : \(\frac{1}{6}\left(\frac{5}{6}-v\right)+\frac{1}{5}v=\frac{3}{20}\)
\(\Leftrightarrow\frac{5}{36}-\frac{v}{6}+\frac{v}{5}=\frac{3}{20}\)
\(\Leftrightarrow\frac{-v}{6}+\frac{v}{5}=\frac{3}{20}-\frac{5}{36}\Leftrightarrow\frac{v}{30}=\frac{1}{90}\Leftrightarrow v=\frac{1}{3}\)(*)
hay \(v=\frac{1}{3}=\frac{1}{y}\Rightarrow y=3\)
Thay (*) vào (1) ta được : \(u=\frac{5}{6}-\frac{1}{3}=\frac{1}{2}\)hay \(u=\frac{1}{2}=\frac{1}{x}\Rightarrow x=2\)
Vậy x = 2 ; y = 3
b, \(\hept{\begin{cases}4\left(x+y\right)=5\left(x-y\right)\\\frac{40}{x+y}+\frac{40}{x-y}=9\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{4}{x-y}=\frac{5}{x+y}\left(1\right)\\\frac{40}{x+y}+\frac{40}{x-y}=9\left(2\right)\end{cases}}\)
Xét phương trình 1 ta có : \(\frac{4}{x-y}-\frac{5}{x+y}=0\)
\(\Leftrightarrow\frac{4\left(x+y\right)-5\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}=0\Leftrightarrow4x+4y-5x+5y=0\)
\(\Leftrightarrow-x+9y=0\Leftrightarrow x=9y\)(*)
Thay vào 2 ta có : \(\frac{40}{9y+y}+\frac{40}{9y-y}=9\)
\(\Leftrightarrow\frac{4}{y}+\frac{5}{y}=9\Leftrightarrow\frac{9}{y}=9\Leftrightarrow y=1\)
Thay y = 1 vào (*) ta có : \(x=9.1=9\)
Vậy x = 9 ; y = 1
\(\Leftrightarrow\left\{{}\begin{matrix}4x^3-2y^3=30\\5\left(x-y\right)\left(x^2+2y^2\right)=30\end{matrix}\right.\)
Trừ vế cho vế:
\(5\left(x-y\right)\left(x^2+2y^2\right)-\left(4x^3-2y^3\right)=0\)
\(\Leftrightarrow x^3-5x^2y+10xy^2-8y^3=0\)
\(\Leftrightarrow\left(x-2y\right)\left(x^2-3xy+4y^2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2y\\x=y=0\left(ktm\right)\end{matrix}\right.\)
Thay vào pt đầu:
\(\Rightarrow2\left(2y\right)^3-y^3=15\)
\(\Rightarrow y^3=1\Rightarrow y=1\Rightarrow x=2\)
a) Ta có: \(\left\{{}\begin{matrix}3x-2\left|y\right|=9\\2x+3\left|y\right|=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}6x-4\left|y\right|=18\\6x+9\left|y\right|=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-13\left|y\right|=15\\3x-2\left|y\right|=9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left|y\right|=\dfrac{-15}{13}\\3x-2\left|y\right|=9\end{matrix}\right.\Leftrightarrow\)Phương trình vô nghiệmVậy: \(S=\varnothing\)
$\begin{cases}3x-2|y|=9\\2x+3|y|=1\\\end{cases}$
`<=>` $\begin{cases}6x-4|y|=18\\6x+9|y|=3\\\end{cases}$
`<=>` $\begin{cases}13|y|=-15(loại)\\|3x|-2|y|=9\\\end{cases}$
Vậy HPT vô nghiệm
`{(x+1)(y-1)=2),((x-3)(y+1)=-6):}`
`<=>{(xy-x+y-1=2),(xy+x-3y-3=-6):}`
`<=>{(x(y-1)=3-y),(xy+x-3y-3=-6):}`
`<=>{(x=[3-y]/[y-1]\text{ (1)}),(xy+x-3y=-3\text{ (2)}):}`
Thay `(1)` vào `(2)` có:
`[3-y]/[y-1] .y+[3-y]/[y-1]-3y=-3`
`=>3y-y^2+3-y-3y^2+3y=-3y+3`
`<=>4y^2-8y=0`
`<=>[(y=0),(y=2):}`
`=>[(x=[3-0]/[0-1]=-3),(x=[3-2]/[2-1]=1):}`
Vậy `S={(-3;0),(1;2)}`
ĐKXĐ: \(\left\{{}\begin{matrix}9y-5\ge0\\x+y\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y\ge\dfrac{5}{9}\\x+y\ge0\end{matrix}\right.\).
Phương trình (1) tương đương với:
\(\left(x^2+y^2\right)\left(x+y\right)-\left(x+y\right)+2xy=0\)
\(\Leftrightarrow\left(x^2+y^2\right)\left(x+y\right)-\left(x^2+y^2\right)+x^2+y^2-\left(x+y\right)+2xy=0\)
\(\Leftrightarrow\left(x^2+y^2\right)\left(x+y-1\right)+\left(x+y\right)^2-\left(x+y\right)=0\)
\(\Leftrightarrow\left(x^2+y^2\right)\left(x+y-1\right)+\left(x+y\right)\left(x+y-1\right)=0\)
\(\Leftrightarrow\left(x+y-1\right)\left(x^2+y^2+x+y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+y-1=0\\x^2+y^2+x+y=0\end{matrix}\right.\)
- Với \(x^2+y^2+x+y=0\) có \(x+y=0\) (theo điều kiện)
suy ra \(x=y=0\) (không thỏa mãn).
- Với \(x+y-1=0\Leftrightarrow y=1-x\) thế vào phương trình (2) ta được:
\(x^2+11x+6=2\sqrt{9\left(1-x\right)-5}+\sqrt{1}\)
\(\Leftrightarrow x^2+11x+5-2\sqrt{14-9x}=0\)
\(\Rightarrow\left(x^2+11x+5\right)^2=4\left(14-9x\right)\)
\(\Leftrightarrow x^4+22x^3+131x^2+146x-31=0\)
Bạn giải phương trình trên, thử lại ta được nghiệm của bài toán.
Đáp án ra số khá xấu nên thầy không ghi ra đây.
Em có thể tham khảo cách làm nhé.
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^2-2xy=30\\x+y=6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy=3\\x+y=6\end{matrix}\right.\)
Thep Viet đảo, x và y là nghiệm:
\(t^2-6t+3=0\Rightarrow\left[{}\begin{matrix}t=3+\sqrt{6}\\t=3-\sqrt{6}\end{matrix}\right.\)
\(\Rightarrow\left(x;y\right)=\left(3+\sqrt{6};3-\sqrt{6}\right);\left(3-\sqrt{6};3+\sqrt{6}\right)\)