Tìm m để \(P=\frac{m^2+1}{2m+1}\)có giá trị nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2M=\frac{2\sqrt{x}+2}{\sqrt{x}+2}\)
để 2M có giá trị nguyên thì \(2\sqrt{x}+2⋮\sqrt{x}+2\)(1)
Lại có \(2\sqrt{x}+4⋮\sqrt{x}+2\)(2)
\(\Rightarrow2⋮\sqrt{x}+2\)(lấy (2) trừ (1))
mà \(\sqrt{x}+2\ge2\)
\(\Rightarrow\sqrt{x}+2=2\) ( vì x thuộc Z)
=> x=0
Ta có: \(M=\frac{\sqrt{x}+1}{\sqrt{x}+2}\) ( ĐK: \(x\ge0\) )
\(\Leftrightarrow2M=\frac{2\left(\sqrt{x}+1\right)}{\sqrt{x}+2}\)
\(\Leftrightarrow2M=\frac{2\sqrt{x}+2}{\sqrt{x}+2}\)
\(\Leftrightarrow2M=\frac{2\sqrt{x}+4-2}{\sqrt{x}+2}\)
\(\Leftrightarrow2M=\frac{2\sqrt{x}+4}{\sqrt{x}+2}-\frac{2}{\sqrt{x}+2}\)
\(\Leftrightarrow2M=2-\frac{2}{\sqrt{x}+2}\)
Để 2M có giá trị nguyên <=> \(2⋮\sqrt{x}+2\)
\(\Leftrightarrow\sqrt{x}+2\inƯ\left(2\right)\)
\(\Leftrightarrow\sqrt{x}+2\in\left\{-1;-2;1;2\right\}\)
Vì \(x\ge0\Leftrightarrow\sqrt{x}+2\ge2\)
\(\Rightarrow\sqrt{x}+2=2\)
\(\Leftrightarrow\sqrt{x}=0\Rightarrow x=0\)
Vậy khi x = 0 thì 2M có giá trị nguyên!
Chúc bạn học tốt! :))
ĐK: x khác 2
PT trên =>\(\frac{-4m-3}{2m+1}=x-2\)
<=>x-2=\(\frac{-4m-2}{2m+1}-\frac{1}{2m+1}\)
\(\Leftrightarrow x-2=-2-\frac{1}{2m+1}\)
Để nguyên thì x-2 nguyên =>\(\frac{1}{2m+1}\text{ nguyên}\Rightarrow2m+1\inƯ\left(1\right)=\left\{1;-1\right\}\Rightarrow m=0;-1\)
Với m=0 =>x+2=-2-1=-3 (loại)
Với m=-1 =>x+2=-2-(-1)=-1 (loại)
Vậy méo có giá trị nào của m để phương trình có nghiệm nguyên dương
\(\frac{-4m-3}{x-2}=2m+1\Leftrightarrow-4m-3=\left(2m+1\right)\left(x-2\right)\)
\(\Leftrightarrow-4m-3=2mx-4m+x-2\)
\(\Leftrightarrow2mx-4m+x-2+4m+3=0\)
\(\Leftrightarrow2mx+x+1=0\)
\(\Leftrightarrow\left(2m+1\right)x+1=0\)
\(\Leftrightarrow\left(2m+1\right)x=-1\)
Để pt có nghiệm dương thì
\(2m+1>0<=>m>-\frac{1}{2}\)vậy ....................
\(A=\frac{2m-7}{m+1}=\frac{2m+2-9}{m+1}=\frac{2\left(m+1\right)-9}{m+1}=2-\frac{9}{m+1}\)
Để \(2-\frac{9}{m+1}\) là số nguyên <=> \(\frac{9}{m+1}\) là Số nguyên
=> m + 1 ∈ Ư(9) = { ± 1; ± 3; ± 9 }
m + 1 | - 9 | - 3 | - 1 | 1 | 3 | 9 |
m | - 10 | - 4 | - 2 | 0 | 2 | 8 |
Vậy m ∈ { - 10 ; - 4 ; - 2 ; 0 ; 2 ; 8 }
Để A nguyên <=> \(\frac{2m-7}{m+1}\in Z\Leftrightarrow\frac{2\left(m+1\right)-9}{m+1}=2-\frac{9}{m+1}\in Z\Leftrightarrow\frac{9}{m+1}\in Z\)
Hay m+1 là U(9)
Ta có bảng sau:
m+1 | -9 | -3 | -1 | 1 | 3 | 9 |
m | -10 | -4 | -2 | 0 | 2 | 8 |
Vậy m=...
1) điều kiện của m: m khác 5/2
thế x=2 vào pt1 ta đc:
(2m-5)*4 - 4(m-1)+3=0 <=> 8m-20-4m+4+3=0<=> 4m = 13 <=> m=13/4 (nhận)
lập △'=[-(m-1)]2-*(2m-5)*3 = (m-4)2
vì (m-4)2 ≥ 0 nên phương trình có nghiệm kép => x1= x2 =2
3) vì △'≥0 với mọi m nên phương trình đã cho có nghiệm với mọi m
Thay x = 4 vào phương trình, ta được :
\(1-m=2\left(2m+1\right)\left(m-1\right)\)
\(\Leftrightarrow2\left(2m+1\right)\left(m-1\right)+\left(m-1\right)=0\)
\(\Leftrightarrow\left(m-1\right)\left(4m+2+1\right)=0\)
\(\Leftrightarrow\left(m-1\right)\left(4m+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}m-1=0\\4m+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}m=1\\m=\frac{-3}{4}\end{cases}}\)
olm .vn
h như cái phần bỏ đi
chả có ai thèm dùng