2 . \(|\)x - 3 \(|\)= 16
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài sai, pt này ko giải được
Đề đúng: \(\dfrac{4x^2+16}{x^2+6}=...\)
Mẫu số bên trái thừa mất số 1
`#040911`
a,
\(\dfrac{1}{2}\cdot\left(x-4\right)-\dfrac{1}{4}\cdot\left(x-\dfrac{4}{3}\right)=2\cdot\left(x-\dfrac{1}{2}\right)\)
\(\Rightarrow\dfrac{1}{2}x-2-\dfrac{1}{4}x+\dfrac{1}{3}=2x-1\\\Rightarrow\left(\dfrac{1}{2}x-\dfrac{1}{4}x-2x\right)=2-\dfrac{1}{3}-1\\ \Rightarrow-\dfrac{7}{4}x=\dfrac{2}{3}\\ \Rightarrow x=\dfrac{2}{3}\div\left(-\dfrac{7}{4}\right)\\ \Rightarrow x=-\dfrac{8}{21}\)
Vậy, \(x=-\dfrac{8}{21}\)
b,
\(\dfrac{3}{4}-\left(x-\dfrac{1}{2}\right)^2=-\dfrac{11}{2}\)
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2=\dfrac{3}{4}-\left(-\dfrac{11}{2}\right)\\ \Rightarrow\left(x-\dfrac{1}{2}\right)^2=\dfrac{25}{4}\\ \Rightarrow\left(x-\dfrac{1}{2}\right)^2=\left(\pm\dfrac{5}{2}\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x-\dfrac{1}{2}=\dfrac{5}{2}\\x-\dfrac{1}{2}=-\dfrac{5}{2}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}+\dfrac{1}{2}\\x=-\dfrac{5}{2}+\dfrac{1}{2}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Vậy, \(x\in\left\{-2;3\right\}\)
c,
\(\dfrac{3}{16}+1\dfrac{1}{16}\cdot\left(x-\dfrac{2}{3}\right)^2=\dfrac{3}{4}\)
\(\Rightarrow\dfrac{17}{16}\cdot\left(x-\dfrac{2}{3}\right)^2=\dfrac{3}{4}-\dfrac{3}{16}\\ \Rightarrow\dfrac{17}{16}\cdot\left(x-\dfrac{2}{3}\right)^2=\dfrac{9}{16}\\ \Rightarrow\left(x-\dfrac{2}{3}\right)^2=\dfrac{9}{16}\div\dfrac{17}{16}\\ \Rightarrow\left(x-\dfrac{2}{3}\right)^2=\dfrac{9}{17}\)
Bạn xem lại đề có sai kh nhỉ?
c) \(\dfrac{3}{16}+\dfrac{1}{\dfrac{1}{16}}\left(x-\dfrac{2}{3}\right)^2=\dfrac{3}{4}\)
\(\Rightarrow16\left(x-\dfrac{2}{3}\right)^2=\dfrac{3}{4}-\dfrac{3}{16}\)
\(\Rightarrow16\left(x-\dfrac{2}{3}\right)^2=\dfrac{9}{16}\)
\(\Rightarrow\left(x-\dfrac{2}{3}\right)^2=\dfrac{9}{16}:16\)
\(\Rightarrow\left(x-\dfrac{2}{3}\right)^2=\dfrac{9}{256}=\left(\dfrac{3}{16}\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x-\dfrac{2}{3}=\dfrac{3}{16}\\x-\dfrac{2}{3}=-\dfrac{3}{16}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{16}+\dfrac{2}{3}\\x=-\dfrac{3}{16}+\dfrac{2}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{41}{48}\\x=\dfrac{23}{48}\end{matrix}\right.\)
b) \(\left(x+\frac{1}{2}\right)^2=\frac{1}{16}\)
\(\Rightarrow\left(x+\frac{1}{2}\right)^2=\left(\pm\frac{1}{4}\right)^2\)
\(\Rightarrow x+\frac{1}{2}=\pm\frac{1}{4}.\)
\(\Rightarrow\left[{}\begin{matrix}x+\frac{1}{2}=\frac{1}{4}\\x+\frac{1}{2}=-\frac{1}{4}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{1}{4}-\frac{1}{2}\\x=\left(-\frac{1}{4}\right)-\frac{1}{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\frac{1}{4}\\x=-\frac{3}{4}\end{matrix}\right.\)
Vậy \(x\in\left\{-\frac{1}{4};-\frac{3}{4}\right\}.\)
c) \(\left(3x+2\right)^3=-27\)
\(\Rightarrow\left(3x+2\right)^3=\left(-3\right)^3\)
\(\Rightarrow3x+2=-3\)
\(\Rightarrow3x=\left(-3\right)-2\)
\(\Rightarrow3x=-5\)
\(\Rightarrow x=\left(-5\right):3\)
\(\Rightarrow x=-\frac{5}{3}\)
Vậy \(x=-\frac{5}{3}.\)
Chúc bạn học tốt!
\(9^7.81:9^5=9^7.9^2:9^5=9^{7+2-5}=9^4\\ x^{12}:x.x^8=x^{12-1+8}=x^{19}\\ 16.2^4:8=2^4.2^4:2^3=2^{4+4-3}=2^5\\ 64.4^5:16=4^3.4^5:4^2=4^{3+5-2}=4^6\\ 3^{12}.3:3^8=3^{12+1-8}=3^5\\ 7^9.7^{12}:2015^0=7^{9+12}:1=7^{19}\)
\(a,\frac{1}{2}x+\frac{2}{3}\left(x-2\right)=\frac{1}{3}\)
\(\frac{1}{2}x+\frac{2}{3}x-\frac{4}{3}=\frac{1}{3}\)
\(\frac{7}{6}x=\frac{5}{3}\)
\(x=\frac{10}{7}\)
\(b,16^{x-1}:16=4^4\)
\(16^{x-1}=4096\)
\(16^{x-1}=16^3\)
\(\Rightarrow x-1=3\)
\(x=4\)
=.= hk tốt!!
a) \(\frac{1}{2}x+\frac{2}{3}\left(x-2\right)=\frac{1}{3}\)
<=>\(\frac{x}{2}+\frac{2x}{3}-\frac{4}{3}-\frac{1}{3}=0\)<=>\(\frac{7x}{6}-\frac{5}{3}=0\)=>x=\(\frac{10}{7}\)
b)16x-1:16=256 => 16x-1=4096=163
T thấy x-1=3 =>x=2
Chúc bạn học tốt
giá trị tuyệt đối x - 3 = 16 : 2
giá trị tuyệt đối x - 3 = 8
vậy => x = 11 hoặc x = -5
Hok tốt
\(2\left|x-3\right|=16\Leftrightarrow\left|x-3\right|=8\)
TH1 : \(x-3=8\Leftrightarrow x=11\)
TH2 : \(x-3=-8\Leftrightarrow x=-5\)