K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 12 2020

\(\Leftrightarrow sinA=2sinB.cosC\)

\(\Leftrightarrow\dfrac{a}{2R}=2.\dfrac{b}{2R}.\dfrac{a^2+b^2-c^2}{2ab}\)

\(\Leftrightarrow a^2=a^2+b^2-c^2\)

\(\Leftrightarrow b^2=c^2\Leftrightarrow b=c\)

Vậy tam giác ABC cân tại A

20 tháng 5 2021

.jkilfo,o7m5ijk

15 tháng 6 2021

 Ta có \sin 5\alpha -2\sin \alpha \left({\cos} 4\alpha +\cos 2\alpha \right)=\sin 5\alpha -2\sin \alpha .\cos 4\alpha -2\sin \alpha .\cos 2\alphasin5α2sinα(cos4α+cos2α)=sin5α2sinα.cos4α2sinα.cos2α

=\sin 5\alpha -\left(\sin 5\alpha -\sin 3\alpha \right)-\left(\sin 3\alpha -\sin \alpha \right)=sin5α(sin5αsin3α)(sin3αsinα)

=\sin \alpha .=sinα.

Vậy \sin 5\alpha -2\sin \alpha \left({\cos} 4\alpha +\cos 2\alpha \right)=\sin \alphasin5α2sinα(cos4α+cos2α)=sinα

3 tháng 7 2018

sinA/2.cos^3(B/2)=sinB/2.cos^3(A/2)
sinA/2.cos(B/2)[ 1 - sin^2B/2]=sinB/2.cos(A/2)[1 -sin^2A/2]
sinA/2.cosB/2 - sinB/2.cosA/2 = 1/2sinA/2.sinB/2[ sinB - sinA]
sin(A-B)/2 = sinA/2.sinB/2 cos(A+B)/2.sin(A-B)/2
sin(A-B)/2[ 1 - sinA/2.sinB/2 cos(A+B)/2] = 0
Vì [1 - sinA/2.sinB/2 cos(A+B)/2] >0
=> sin(A-B)/2 =0
=> A = B

QT
Quoc Tran Anh Le
Giáo viên
21 tháng 9 2023

Ta có: \(A + B + C = {180^0}\)(tổng 3 góc trong một tam giác)

\(\begin{array}{l} \Rightarrow A = {180^0} - \left( {B + C} \right)\\ \Leftrightarrow \sin A = \sin \left( {{{180}^0} - \left( {B + C} \right)} \right)\\ \Leftrightarrow \sin A = \sin \left( {B + C} \right) = \sin B.\cos C + \sin C.\cos B\end{array}\)

26 tháng 4 2018

Bạn ghi sai đề r. Tam giác bình thường (không vuông) làm gì có sin, cos với lại phải ghi nếu vuông thì vuông tại đâu nha

27 tháng 4 2018

Bạn kẻ 3 đường trung trực ứng với 3 cạnh BC, AC và AB, gọi giao điểm của 3 đường trung trực này là O => O là tâm đường tròn ngoại tiếp tam giác ABC (định nghĩa) => OA = OB = OC = R

Các đường trung trực của các cạnh lần lượt cắt BC,AC và AB lần lượt tại các điểm A1, B1 và C1.

Hạ đường cao BH của tam giác ABC

Dễ dàng chứng minh được : tam giác ABH đồng dạng tam giác OCA1 (góc-góc) {\(\widehat{AHB}=\widehat{CA1O}=90^o\)và \(\widehat{BAH}=\widehat{A1OC}=\frac{1}{2}SĐ\widebat{BC}\)

2 tam giác này đồng dạng => AH/OA1 = AB/OC <=> AH/AB = OA1/OC <=> cos A = OA1/R (hệ thức lượng trong tam giác vuông ABH vuông tại H thì cos A = AH/AB) => OA1 = R. cos A 

CMTT : cos B= OB1/R và cos C = OC1/R 

Đặt BC = a, AC = b và AB = c

Kéo dài CO cắt đường tròn (O) tại M => CM là đường kính của đt (O) => CM = 2R

Ta có \(\widehat{CAM}=90^O\)(góc nội tiếp chắn nửa đt) => tam giác ACM vuông tại A => sin \(\widehat{AMC}=\frac{AC}{MC}=\frac{b}{2R}\)

Ta có : \(\widehat{AMC}=\widehat{B}\)(cùng chắn \(\widebat{AC}\)) => sin B = \(\frac{b}{2R}\)

CMTT : sin A = \(\frac{a}{2R}\)và sin C = \(\frac{c}{2R}\)

=> sin A + sin B + sin C = \(\frac{a+b+c}{2R}\)=> a +b +c = 2R (sin A + sin B + sin C)

Trong 1 tam giác bất kỳ tổng của 2 cạnh luôn lớn hơn cạnh thư 3 (cái này ai cũng biết rồi :))))

Với tam giác OA1B1 thì OA1+OB1 > A1B1 = AB/2 (Vì A1, B1 lần lượt là trung điểm của BC và AC => A1B1 là đường trung bình của tam giác ABC nên A1B1 =AB/2) (1)

tương tự OA1+ OC1> A1C1 = AC/2 (2)

OB1 + OC1 > B1C1 = BC/2 (3)

cộng từng vế với vế của (1), (2) và (3) => a + b +c < 4 (OA1 + OB1 + OC1) (4)

Thay a+b+c = 2R (sin A + sin B + sin C) và OA1 = R.cos A, OB1= R.cos B, OC1=R.cos C vào (4) ta được:

sin A + sin B + sin C < 2(cos A + cos B + cos C) => ĐPCM.

Note: Bạn ghi nhầm đề rồi phải nhân thêm 2 vào vế cos thì mới đúng nhé. Còn cách CM như mình làm ạ.

6 tháng 5 2017

Đặt \(f\left(A,B,C\right)=cosA+cosB+cosC+\dfrac{1}{sinA}+\dfrac{1}{sinB}+\dfrac{1}{sinC}-2\sqrt{3}-\dfrac{3}{2}\)

Ta có: \(f\left(A,B,C\right)-f\left(A,\dfrac{B+C}{2},\dfrac{B+C}{2}\right)\)

\(=\left(cosB+cosC-2cos\left(\dfrac{B+C}{2}\right)\right)+\left(\dfrac{1}{sinB}+\dfrac{1}{sinC}-\dfrac{2}{sin\left(\dfrac{B+C}{2}\right)}\right)\)

\(=2cos\left(\dfrac{B+C}{2}\right)\left(cos\left(\dfrac{B-C}{2}\right)-1\right)+\left(\dfrac{1}{sinB}+\dfrac{1}{sinC}-\dfrac{2}{sin\left(\dfrac{B+C}{2}\right)}\right)\left(1\right)\)

Bên cạnh đó ta có:

\(\dfrac{1}{sinB}+\dfrac{1}{sinC}-\dfrac{2}{sin\left(\dfrac{B+C}{2}\right)}\ge\dfrac{4}{sinB+sinC}-\dfrac{2}{sin\left(\dfrac{B+C}{2}\right)}=\dfrac{4\left(1-cos\left(\dfrac{B-C}{2}\right)\right)}{sinB+sinC}\)

Do đó \(\left(1\right)\ge2\left(1-cos\left(\dfrac{B-C}{2}\right)\right)\left(\dfrac{2}{sinB+sinC}-cos\left(\dfrac{B+C}{2}\right)\right)\)

\(=\left(1-cos\left(\dfrac{B-C}{2}\right)\right)\left(\dfrac{1-sin\left(\dfrac{B+C}{2}\right)cos\left(\dfrac{B+C}{2}\right)cos\left(\dfrac{B-C}{2}\right)}{sinB+sinC}\right)\ge0\)

\(\Rightarrow f\left(A,B,C\right)\ge f\left(A,\dfrac{B+C}{2},\dfrac{B+C}{2}\right)\)

Giờ ta chỉ cần chứng minh bất đẳng thức đúng trong trường hợp tam giác cân.

Ta có: \(\left\{{}\begin{matrix}B=\dfrac{\pi}{2}-\dfrac{A}{2}\\cosB=cosC=\dfrac{sinA}{2}\\sinB=sinC=\dfrac{cosA}{2}\end{matrix}\right.\)

\(f\left(A,\dfrac{B+C}{2},\dfrac{B+C}{2}\right)=\left(cosA+2sin\left(\dfrac{A}{2}\right)-\dfrac{3}{2}\right)+\left(\dfrac{1}{sinA}+\dfrac{2}{cos\left(\dfrac{A}{2}\right)}-2\sqrt{3}\right)\)

\(=\dfrac{-2\left(sin\left(\dfrac{A}{2}\right)-1\right)^2}{2}+\dfrac{1+4sin\left(\dfrac{A}{2}\right)-2\sqrt{3}sinA}{sinA}\)

Mà ta có: \(1\ge sin\left(\dfrac{A}{2}+\dfrac{\pi}{3}\right)\)

\(\Rightarrow8sin\left(\dfrac{A}{2}\right)\ge2\sqrt{3}sinA+4sin^2\left(\dfrac{A}{2}\right)\)

\(\Rightarrow1+4sin\left(\dfrac{A}{2}\right)-2\sqrt{3}sinA\ge4sin^2\left(\dfrac{A}{2}\right)-4sin\left(\dfrac{A}{2}\right)+1=\left(2sin\left(\dfrac{A}{2}-1\right)\right)^2\)

Từ đó ta suy ra:

\(f\left(A,\dfrac{B+C}{2},\dfrac{B+C}{2}\right)\ge\left(2sin-1\right)^2\left(\dfrac{1}{sinA}-\dfrac{1}{2}\right)\ge0\)

Vậy bài toán đã được chứng minh. Dấu = xảy ra khi \(A=B=C=\dfrac{\pi}{3}\)

6 tháng 5 2017

Hàm số \(f\left(x\right)=\cos\left(x\right)+\dfrac{1}{\sin\left(x\right)}\) là hàm lồi trên \(\left(0,\pi\right)\)

Do đó theo BĐT Jensen ( trường hợp của Karamata) có:

\(f\left(A\right)+f\left(B\right)+f\left(c\right)\ge3f\left(\dfrac{A+B+C}{3}\right)=3f\left(\dfrac{\pi}{3}\right)=2\sqrt{3}+\dfrac{3}{2}\)

P/s:Tính độ "lầy" của hàm số:

\(f''(x)=-\cos(x)-\frac{1}{\sin(x)}+\frac{2}{(\sin(x))^3}\)

Và cho \(x\in (0,\pi);f''(x)>0\) nếu \(2>(\sin(x))^2(\sin(x)\cos(x)+1)\) là xài dc Jensen :D

23 tháng 3 2022

tau chịu