Cho hình vuông ABCD có cạnh AB=a, điểm E thuộc cạnh CD, điểm F thuộc cạnh BC, góc FAE bằng 45độ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D M E F
Dễ thấy \(\widehat{DBC}=90^o\). gọi M là trung điểm của DF.
theo tính chất đường trung tuyến ứng với cạnh huyền của tam giác vuông, ta có :
EM = BM = \(\frac{DF}{2}\)
xét tứ giác MEBF, ta có :
\(\widehat{EBF}=135^o\), \(\widehat{MEB}+\widehat{MFB}=\widehat{MBE}+\widehat{MBF}=\widehat{EBF}=135^o\)
nên \(\widehat{EMF}=360^o-2.135^o=90^o\)
\(\Delta DEF\)có đường cao EM là đường trung tuyến nên ED = EF.