K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2020

undefined

20 tháng 12 2022

Câu 2:

\(\Leftrightarrow\dfrac{\left(n+2\right)!}{2!\cdot n!}-4\cdot\dfrac{\left(n+1\right)!}{n!\cdot1!}=2\left(n+1\right)\)

\(\Leftrightarrow\dfrac{\left(n+1\right)\left(n+2\right)}{2}-4\cdot\dfrac{n+1}{1}=2\left(n+1\right)\)

\(\Leftrightarrow\left(n+1\right)\left(n+2\right)-8\left(n+1\right)=4\left(n+1\right)\)

=>(n+1)(n+2-8-4)=0

=>n=-1(loại) hoặc n=10

=>\(A=\left(\dfrac{1}{x^4}+x^7\right)^{10}\)

SHTQ là: \(C^k_{10}\cdot\left(\dfrac{1}{x^4}\right)^{10-k}\cdot x^{7k}=C^k_{10}\cdot1\cdot x^{11k-40}\)

Số hạng chứa x^26 tương ứng với 11k-40=26

=>k=6

=>Số hạng cần tìm là: \(210x^{26}\)

18 tháng 12 2021

Số hạng tổng quát: \(C_n^k.a^k.b^{n-k}\)

+ Có :   - a là: 2x;   b là : \(-\dfrac{1}{x^3}\);   n là: 7.

Thay vào số hạng tổng quát rồi rút gọn ta đc:

\(C_7^k.\left(-1\right)^{7-k}.2.x^{5k-21}\) theo đề bài số hạng chứa x^4 => 5k-21=4 => k= 5.

Vậy số hạng tổng quát là: \(C^5_7.2\)

 

18 tháng 12 2021

em cảm ơn ạ

8 tháng 2 2021

Ai cíu dới

8 tháng 2 2021

bạn có hướng dẫn rùi thây

NV
13 tháng 11 2021

\(C_n^0+C_n^1+C_n^2=11\)

\(\Rightarrow1+n+\dfrac{n\left(n-1\right)}{2}=11\)

\(\Leftrightarrow n^2+n-20=0\Rightarrow\left[{}\begin{matrix}n=4\\n=-5\left(loại\right)\end{matrix}\right.\)

\(\left(x^3+\dfrac{1}{x^2}\right)^4\) có SHTQ: \(C_4^k.x^{3k}.x^{-2\left(4-k\right)}=C_4^k.x^{5k-8}\)

\(5k-8=7\Rightarrow k=3\)

Hệ số: \(C_4^3=4\)

28 tháng 6 2017

Phép nhân các phân thức đại số

22 tháng 7 2023

a) Các đơn thức là:

\(\dfrac{4\pi r^3}{3};\dfrac{p}{2\pi};0;\dfrac{1}{\sqrt{2}}\)

b) Các đa thức và hạng tử là:

\(ab-\pi r^2\)

Hạng tử: \(ab,-\pi r^2\)

\(x-\dfrac{1}{y}\)

Hạng tử: \(x,-\dfrac{1}{y}\)

\(x^3-x+1\)

Hạng tử: \(x^3,-x,1\)