2+22+23+...+260chia hết cho 3;7;15
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sơ đồ con đường |
Lời giải chi tiết |
|
Ta có: C = 2 + 2 2 + 2 3 + 2 4 + ... + 2 59 + 2 60 = 2 1 + 2 + 2 3 1 + 2 + ... + 2 59 1 + 2 = 2.3 + 2 3 .3 + ... + 2 59 .3 = 2 + 2 3 + ... + 2 59 .3 ⇒ C ⋮ 3 |
A= (2+22)+(23+24)+...+(259+260)
A=2.(1+2)+23.(1+2)+...+259.(1+2)
A=2.3+23.3+...+259.3
A=3.(2+23+...+259)
Vì 3 chia hết cho 3 => 3.(2+23+...+259) chia hết cho 3
=>A chia hết cho 3
A= (2+22+23)+...+(258+259+260)
A=2.(1+2+22)+...+258.(1+2+22)
A=2.7+...+258.7
A=7.(2+...+258)
Vì 7 chia hết cho 7 =>7.(2+...+258) chia hết cho 7
CHIA HẾT CHO 3 :
A= (2+22)+(23+24)+...+(259+260)
A=2.(1+2)+23.(1+2)+...+259.(1+2)
A=2.3+23.3+...+259.3
A=3.(2+23+...+259)
Vì 3 chia hết cho 3 => 3.(2+23+...+259) chia hết cho 3
=>A chia hết cho 3
a) Ta có: \(32^{12}\cdot98^{20}\)
\(=2^{60}\cdot2^{20}\cdot7^{40}\)
\(=2^{80}\cdot7^{40}\)
\(=\left(2^2\cdot7\right)^{40}=28^{40}\)(đpcm)
b) Ta có: \(3^{1994}+3^{1993}-3^{1992}\)
\(=3^{1992}\left(3^2+3-1\right)\)
\(=3^{1992}\cdot11⋮11\)
a: \(G=8^8+2^{20}\)
\(=2^{24}+2^{20}\)
\(=2^{20}\left(2^4+1\right)=2^{20}\cdot17⋮17\)
b: Sửa đề: \(H=2+2^2+2^3+...+2^{60}\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)\)
\(=3\left(2+2^3+...+2^{59}\right)⋮3\)
\(H=2+2^2+2^3+...+2^{60}\)
\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(=7\left(2+2^4+...+2^{58}\right)⋮7\)
\(H=2+2^2+2^3+...+2^{60}\)
\(=\left(2+2^2+2^3+2^4\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)
\(=2\left(1+2+2^2+2^3\right)+...+2^{57}\left(1+2+2^2+2^3\right)\)
\(=15\left(2+2^5+...+2^{57}\right)⋮15\)
c: \(E=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{1989}\left(1+3+3^2\right)\)
\(=13\left(1+3^3+...+3^{1989}\right)⋮13\)
\(E=1+3+3^2+3^3+...+3^{1991}\)
\(=\left(1+3+3^2+3^3+3^4+3^5\right)+\left(3^6+3^7+3^8+3^9+3^{10}+3^{11}\right)+...+3^{1986}+3^{1987}+3^{1988}+3^{1989}+3^{1990}+3^{1991}\)
\(=364\left(1+3^6+...+3^{1986}\right)⋮14\)
Lời giải:
$A=(2+2^2+2^3)+(2^4+2^5+2^6)+....+(2^{58}+2^{59}+2^{60})$
$=2(1+2+2^2)+2^4(1+2+2^2)+....+2^{58}(1+2+2^2)$
$=(1+2+2^2)(2+2^4+....+2^{58})$
$=7(2+2^4+....+2^{58})\vdots 7$.
A = 2+22+23+...+260
A = 2.(1+2+22) + 24.(1+2+22) + ... + 258.(1+2+22)
A = 2.7+24.7+...+258.7
A= 7. (2+24+...+258) chia hết cho 7
--> A chia hết cho 7 (ĐPCM)
Sơ đồ con đường |
Lời giải chi tiết |
Bước 1. Phân tích sao cho tổng đó thành tích các thừa số trong đó có một thừa số chia hết cho 7. Bước 2. Áp dụng tính chất chia hết của một tích. |
Ta có: A = 2 + 2 2 + 2 3 + … + 2 60 = 2 + 2 2 + 2 3 + 2 4 + 2 5 + 2 6 + … + 2 58 + 2 59 + 2 60 = 2. 1 + 2 + 2 2 + 2 4 . 1 + 2 + 2 2 + … + 2 58 . 1 + 2 + 2 2 = 2. 1 + 2 + 2 2 + 2 4 . 1 + 2 + 2 2 + … + 2 58 . 1 + 2 + 2 2 = 2 + 2 4 + … + 2 58 .7 ⇒ A ⋮ 7 |
\(B=2\left(1+2+2^2+...+2^{58}+2^{59}\right)⋮2\)
\(B=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)\)
\(=3\left(2+2^3+...+2^{59}\right)⋮3\)
\(B=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(=7\left(2+2^4+...+2^{58}\right)⋮7\)
\(B=2\left(1+2+2^2+2^3\right)+...+2^{57}\left(1+2+2^2+2^3\right)\)
\(=15\left(2+2^5+...+2^{57}\right)⋮15\)
a ) Đặt A = 2 +22 + 23 + 24 + ... + 259 + 260
=> A = ( 2 + 22 ) + ( 23 + 24 ) + ... + ( 259 + 260 )
=> A = 2.( 1 + 2 ) + 23.( 1 + 2 ) + .... + 259.( 1 + 2 )
=> A = 2.3 + 23.3 + .... + 259.3
=> A = 3.( 2 + 23 + ... + 259 )
Vì 3 ⋮ 3 => A ⋮ 3
b ) A = 2 + 22 + 23 + 24 + ... + 259 + 260
=> A = ( 2 + 22 + 23 ) + ( 24 + 25 + 26 ) + ..... + ( 258 + 259 + 260 )
=> A = 2.( 1 + 2 + 2.2 ) + 24.( 1 + 2 + 2.2 ) + .... + 258.( 1 + 2 + 2.2 )
=> A = 2.7 + 24.7 + .... + 258.7
=> A = 7.( 2 + 24 + ... + 258 )
Vì 7 ⋮ 7 => A ⋮ 7
c ) A = 2 + 22 + 23 + 24 + ..... + 257 + 258 + 259 + 260
=> A = 2.( 1 + 2 + 22 + 23 ) + 25.( 1 + 2 + 22 + 23 ) + .... + 257.( 1 + 2 + 22 + 23 )
=> A = 2.15 + 25.15 + .... + 257.15
=> A = 15.( 2 + 25 + .... + 257 )
Vì 15 ⋮ 15 => A ⋮ 15
chứng minh hả