K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2017

Điều kiện: x ≠ -y; y  ≠ -z; z  ≠  -x

Từ hệ phương trình đã cho suy ra: x  ≠ 0; y  ≠  0; z  ≠  0

x y x + y = 2 3 y z y + z = 6 5 z x z + x = 3 4 ⇔ x + y x y = 3 2 y + z y z = 5 6 z + x z x = 4 3 ⇔ 1 x + 1 y = 3 2 1 y + 1 z = 5 6 1 z + 1 x = 4 3

Đ ặ t   1 x = a ;   1 y = b ;   1 z = c

Ta có hệ phương trình:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Cộng từng vế ba phương trình ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Suy ra:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vậy hệ phương trình đã cho có một nghiệm (x; y; z) = (1; 2; 3).

18 tháng 12 2022

Ta có x + y + z = 0 

<=> (x + y + z)2 = 0

<=> \(x^2+y^2+z^2+2xy+2yz+2zx=0\)

\(\Leftrightarrow xy+yz+zx=-3\) (vì x2 + y2 + z2 = 6)

\(\Leftrightarrow x\left(y+z\right)+yz=-3\)

\(\Leftrightarrow-x^2+yz=-3\Leftrightarrow yz=x^2-3\) (vì x + y + z = 0)

Khi đó \(x^3+y^3+z^3=x^3+(y+z).(y^2+z^2-yz)\)

\(=x^3-x.[6-x^2-(x^2-3)]\)

\(=x^3-x.(9-2x^2)=3x^3-9x=6\)

Ta được \(\Leftrightarrow x^3-3x-2=0\Leftrightarrow(x^3+1)-3(x+1)=0\)

\(\Leftrightarrow(x+1)(x^2-x-2)=0\)

\(\Leftrightarrow\left(x+1\right)^2\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\)

Với x = -1 ta có hệ \(\left\{{}\begin{matrix}y+z=1\\y^2+z^2=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1-z\\(1-z)^2+z^2=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1-z\\z^2-z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1-z\\\left[{}\begin{matrix}z=-1\\z=2\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}y=2\\z=-1\end{matrix}\right.\\\left\{{}\begin{matrix}y=-1\\z=2\end{matrix}\right.\end{matrix}\right.\)

Với x = 2 ta có hệ : \(\left\{{}\begin{matrix}y+z=-2\\y^2+z^2=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-2-z\\(-2-z)^2+z^2=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-2-z\\z^2+2z+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=-2-z\\z=-1\end{matrix}\right.\Leftrightarrow y=z=-1\)

Vậy (x;y;z) = (2;-1;-1) ; (-1 ; 2 ; -1) ; (-1 ; -1 ; 2)

18 tháng 12 2022

em cảm ơn ạ

13 tháng 5 2016

Đặt \(p=x+y+z\)

       \(q=xy+zy+zx\)

        \(r=xyz\)

Ta có :

    \(2q=\left(x+y+z\right)^2-\left(x^2+y^2+z^2\right)=4-6=-2\Rightarrow q=-1\)

Bây giờ ta sẽ đi tìm r

Đặt \(S_n=x^n+y^n+z^n\)

Khi đó \(S_0=3\)

           \(S_1=-2\)

            \(S_2=6\)

Ta có :

\(S_n-\left(x+y+z\right)S_{n-1}+\left(xy+yz+zx\right)S_{n-2}-xýzS_{n-3}=0\)

Suy ra \(S_n=-2S_{n-1}+S_{n-2}+rS_{n-3}\)

Lấy n = 3, ta được :

\(S_3=-2S_2+S_1+rS_0=-14+3r\)

Lấy n = 4, ta được :

\(S_4=-2S_3+S_2+rS_1=28-6r+6-2r=34-8r\)

Lấy n = 5, ta được :

\(S_5=-2S_4+S_3+rS_2=-68+16r-14+3r+6r=-82+25r\)

Mà \(S_5=-32\) nên r = 2.

Do đó x, y, z là nghiệm của phương trình

\(t^3+2t^2-t-2=0\Leftrightarrow t\in\left\{1;-1;-2\right\}\)

Vậy nghiệm của hệ là \(\left\{1;-1;-2\right\}\) và các hoán vị của nó

 

 

12 tháng 11 2015

PT (1) <=> (x + 1)(y + 1) = 2         PT (2) <=> (y + 1)(z + 1) = 6                  PT (3) <=> (z + 1)(x + 1) = 3

Do đó: \(x+1=\frac{2}{y+1}\) (y khác -1)  và  \(x+1=\frac{3}{z+1}\) (z khác -1) . Từ đó suy ra:\(\frac{2}{y+1}=\frac{3}{z+1}\Leftrightarrow2z+2=3y+3\Leftrightarrow2z-3y=1\)

\(\Rightarrow z=\frac{3y+1}{2}\)(*). Thay (*) vào PT (2) ta có: \(\frac{3y^2+y}{2}+y+\frac{3y+1}{2}=5\Leftrightarrow3y^2+6y-9=0\Leftrightarrow3\left(y+1\right)\left(y-3\right)=0\). Do đó y = -1 (loại) hoặc y = 3

y = 3 => 2z = 1 + 3y = 10 => z = 5   => \(x=\frac{2}{y+1}-1=-\frac{1}{2}\)

Vậy nghiệm của hệ PT đã cho là \(x=-\frac{1}{2}\); y = 3 và z = 5

 

15 tháng 10 2016

Ta có (a + b)5 = a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5

= 5ab(a + b)(a2 - ab + b2) + 10a2b2(a + b) + a5 + b5

= - 10(a2 - ab + b2) - 20ab + a5 + b5

= - 5(2a2 - 2ab + 2b2 + 4ab) + a5 + b5

= - 5(a2 + b2 + c2) + a5 + b5

=> a5 + b+ c5 = - 5(a2 + b2 + c2) = 30

=> (a2 + b2 + c2) = - 6

Mà a2 + b2 + c2 + 2(ab + bc + ca) = 0

=> ab + bc + ca = - 3 (1)

Ta lại có a + b = - c

<=> a3 + b3 + 3ab(a + b) = - c3

<=> a3 + b3 + c3 = 3abc = 6

<=> abc = 2 (2)

Từ (1) và (2) ta có hệ

\(\hept{\begin{cases}x+y+z=0\\xyz=2\\xy+yz+xz=-3\end{cases}}\)

Vậy x, y, z là nghiệm của pt

A3 - 3A - 2 = 0

Giải phương trình này tìm nghiệm. Vì vai trò x, y, z là như nhau nên sắp sếp ngẫu nhiên 3 nghiệm tìm được sẽ là nghiệm cần tìm

14 tháng 10 2016

Cho 3 số -1; -1; 2 sắp xếp 3 số đó đi là có nghiệm phương trình đấy

6 tháng 6 2019

Làm hơi tắt , thông cảm  ;))

Từ (1) \(\Rightarrow36=\left(x+y+z\right)^2\Leftrightarrow36=x^2+y^2+z^2+2\left(xy+yz+zx\right)\)

          \(\Leftrightarrow36=18+2\left(xy+yz+zx\right)\Leftrightarrow xy+yz+zx=9\)(4)

Từ (3) \(\Rightarrow16=\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2\Leftrightarrow16=x+y+z+2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)\)

          \(\Leftrightarrow\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=5\Leftrightarrow\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)^2=25\)

         \(\Leftrightarrow xy+yz+zx+2\left(\sqrt{xy^2z}+\sqrt{xyz^2}+\sqrt{x^2yz}\right)=25\)

         \(\Leftrightarrow\sqrt{xyz}\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)=8\Leftrightarrow\sqrt{xyz}=\frac{8}{4}\Leftrightarrow xyz=4\)(5)

Vậy hệ đã cho tương đương với :

\(\hept{\begin{cases}x+y+z=6\left(1\right)\\xy+yz+zx=9\left(4\right)\\xyz=4\left(5\right)\end{cases}}\)

Từ (5) \(\Rightarrow yz=\frac{4}{x}\)(Dễ thấy \(x,y,z>0\))

     (4)  \(\Leftrightarrow xy+yz+zx+x^2=9+x^2\Leftrightarrow x\left(x+y+z\right)+yz=9+x^2\)

           \(\Leftrightarrow x.6+\frac{4}{x}=9+x^2\Leftrightarrow x^3-6x^2+9x-4=0\)

           \(\Leftrightarrow\left(x-1\right)^2\left(x-4\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=4\end{cases}.}\)

Thế vào ta suy ra hệ có các nghiệm : \(\left(x,y,z\right)=\left(1,1,4\right),\left(1,4,1\right),\left(4,1,1\right).\)

            

6 tháng 6 2019

thanks bạn Đào Thu Hòa 

4 tháng 2 2017

Bài b nhé bạn!

\(\hept{\begin{cases}\frac{xyz}{x+y}=2\\\frac{xyz}{y+z}=\frac{6}{5}\\\frac{xyz}{x+z}=\frac{3}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{x+y}{xyz}=\frac{1}{2}\\\frac{y+z}{xyz}=\frac{5}{6}\\\frac{x+z}{xyz}=\frac{2}{3}\end{cases}}}\)\(\Leftrightarrow\hept{\begin{cases}\frac{1}{yz}+\frac{1}{xz}=\frac{1}{2}\\\frac{1}{xz}+\frac{1}{xy}=\frac{5}{6}\\\frac{1}{xy}+\frac{1}{yz}=\frac{2}{3}\end{cases}}\Rightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=\frac{\frac{1}{2}+\frac{5}{6}+\frac{2}{3}}{2}=1\)

Trừ lại từng phương trình trong hệ:

\(\hept{\begin{cases}\frac{1}{xy}=\frac{1}{2}\\\frac{1}{yz}=\frac{1}{6}\\\frac{1}{xz}=\frac{1}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}xy=2\\yz=6\\xz=3\end{cases}\Rightarrow xyz=\sqrt{2.6.3}=6}\)

Chia lại từng phương trình trong hệ mới, được:

\(\hept{\begin{cases}z=3\\x=1\\y=2\end{cases}}\)

Vậy \(\left(x;y;z\right)=\left(1;2;3\right)\)

Xong rồi đó!!!