Cho hàm số f x = x 2 + x − 6 x − 2 khi x > 2 − 2 a x + 1 khi x ≤ 2 . Xác định a để hàm số liên tục tại điểm x = 2
A. a = 1 2
B. a = - 1
C. a = 1
D. a = 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\lim\limits_{x\rightarrow2}f\left(x\right)=\lim\limits_{x\rightarrow2}\dfrac{x^2+x-6}{x-2}=\lim\limits_{x\rightarrow2}\dfrac{\left(x-2\right)\left(x+3\right)}{x-2}=\lim\limits_{x\rightarrow2}\left(x+3\right)=5\\ f\left(2\right)=5\\ \rightarrow\lim\limits_{x\rightarrow2}f\left(x\right)=f\left(2\right)\)
Suy ra f(x) liên tục tại x = 2.
Đáp án D
Ta có: f(2) = 4
lim x → 2 − f ( x ) = lim x → 2 − x 2 = 4
lim x → 2 + f ( x ) = lim x → 2 + − x 2 2 + b x − 6 = 2 b − 8
Vì hàm số có đạo hàm tại x= 2 nên hàm số liên tục tại x = 2
⇔ lim x → 2 − f ( x ) = lim x → 2 + f ( x ) ⇔ 4 = 2 b − 8 ⇔ b = 6
Ta có: x+1 khi x lớn hơn hoặc bằng 0
-x+1 khi x bé hơn 0
mà đề hỏi f(2) <=> 2>0
vậy ta áp dụng: f(2)=2+1=3
a: TXĐ: D=R
b: \(f\left(-1\right)=\dfrac{2}{-1-1}=\dfrac{2}{-2}=-1\)
\(f\left(0\right)=\sqrt{0+1}=1\)
\(f\left(1\right)=\sqrt{1+1}=\sqrt{2}\)
\(f\left(2\right)=\sqrt{3}\)
Ở góc trái khung soạn thảo có hỗ trợ viết công thức toán (biểu tượng $\sum$). Bạn viết lại đề bằng cách này để được hỗ trợ tốt hơn.
Đáp án B