Tìm giá trị nguyên của tham số m ∈ − 10 ; 10 để phương trình 10 + 1 x 2 + m 10 − 1 x 2 = 2.3 x 2 + 1 có đúng hai nghiệm phân biệt.
A. 14
B. 15
C. 13
D. 16
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để B tồn tại \(\Leftrightarrow2m< 3m+1\Leftrightarrow m>-1\)
TH1: \(10\le3m+1\) \(\Leftrightarrow m\ge3\)
\(A\cap B=[2m;10)\) có đúng ba số nguyên khi \(6< 2m\le7\) \(\Leftrightarrow3< m\le\dfrac{7}{2}\) ( tm đk )
TH2: \(3m+1< 10\) \(\Leftrightarrow m< 3\)
\(A\cap B=\left[2m;3m+1\right]\) có đúng ba số nguyên khi
Trường hợp m nguyên thì \(2m+2=3m+1\Leftrightarrow m=1\) (thỏa mãn)
Trường hợp m là số thực thì rộng lắm...
Vậy có 8 giá trị nguyên của m thỏa mãn yêu cầu bài toán.
Đáp án D
Đáp án B
Ta có y ' = 4 x 3 - 4 m 2 + 1 x , ∀ x ∈ ℝ . Phương trình y ' = 0 ⇔ [ x = 0 x = m 2 + 1 .
Hệ số a > 0 suy ra giá trị cực tiểu của hàm số là y C T = 2 - m 2 + 1 4 ≤ 1
Dấu “=” xảy ra khi và chỉ khi m 2 = 0 ⇒ m = 0 .
+) Để phương tình ban đầu có đúng hai nghiệm phân biệt thì phương trình bậc hai ẩn t hoặc có nghiệm kép t > 1 hoặc có 2 nghiệm phân biệt thỏa mãn
Để phương trình ban đầu có đúng hai nghiệm phân biệt thì phương trình (*)
TH1: Phương trình (*) có nghiệm kép t > 1
Kết hợp 2 TH và kết hợp điều kiện của bài toán ta có
=> Có 15 giá trị của m thỏa mãn yêu cầu bài toán.
Chọn: B