Viết chương trình tính S=sqrt(2)+sqrt(4)+....+sqrt(2*n)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Program bai1;
uses crt;
var n , i : integer;
s: real;
begin
clrscr;
write('nhap so n ='); readln(n);
for i:= 1 to n do
s:=s+sqrt((n-1)+sqrt(n));
writeln('tong s = ' ,s:4:2);
readln;
end.
program bai1;
uses crt;
var
begin
clrscr;
write('Nhap so N=);readln(n);
s:=0;
for i:=i to n do
s:=s+sqrt(i+sqrt(i+1));
writeln('Tong la ',s);
readln
end.
\(PT\Leftrightarrow7x^2-x+4-2\sqrt{2\left(3x^2-1\right)}-2\sqrt{2\left(x^2-x\right)}+2x\sqrt{2\left(x^2+1\right)}=0\)
\(\Leftrightarrow\left(3x^2-1-2\sqrt{2\left(3x^2-1\right)}+2\right)+\left(x^2-x-2\sqrt{2\left(x^2-x\right)}+2\right)+\left(2x^2+2x\sqrt{2\left(x^2+1\right)}+x^2+1\right)=0\)
\(\Leftrightarrow\left(\sqrt{3x^2-1}-\sqrt{2}\right)^2+\left(\sqrt{x^2-x}-\sqrt{2}\right)^2+\left(\sqrt{2}x+\sqrt{x^2+1}\right)^2=0\)
Dấu = xảy ra khi x = - 1
program Lam_Lui;
var S:extended;
i,n:integer;
begin
clrscr;
write('Nhap n = ');
readln(n);
S:=0;
for i:=n downto 1 do S:=sqrt(i+S);
write('Sai tự chịu: ',S);
readln;
end.
program Lam_Lui;
var S:extended;
i,n:integer;
begin
clrscr;
write('Nhap n = ');
readln(n);
S:=0;
for i:=n downto 1 do S:=sqrt(i+S);
writeln('Sai tự chịu: ',S);
readln;
end.
\(a_n=\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}\)
\(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}\)
\(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}\)
\(=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Đến đây thay n vào tính S nhé
\(S=\frac{-1+\sqrt{2}}{2-1}+\frac{-\sqrt{2}+\sqrt{3}}{3-2}+...+\frac{-\sqrt{99}+\sqrt{100}}{100-99}\)
\(=-1+\sqrt{2}-\sqrt{2}+\sqrt{3}-....-\sqrt{99}+\sqrt{100}\)
\(=-1+\sqrt{100}\)
\(\hept{\begin{cases}a=\left(x^2-x+1\right)^2\\b=x^2\end{cases}}\)
\(a^2-\left(b+1\right)a+b=0\Leftrightarrow\left(a-1\right)\left(a-b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=1\\a=b\end{cases}\Leftrightarrow}\orbr{\begin{cases}\left(x^2-x+1\right)^2=1\\\left(x^2-x+1\right)^2=x^2\end{cases}}\)(easy)
Tổng quát:
\(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}\)\(=\dfrac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n+1}+\sqrt{n}\right)}\)
\(=\dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}\)\(=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)
\(\Rightarrow S=\dfrac{10}{11}\)
Ta có công thức tổng quát như sau:
\(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}\)
\(=\dfrac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left[\left(n+1\right)\sqrt{n}+n\sqrt{n+1}\right]\left[\left(n+1\right)\sqrt{n}-n\sqrt{n+1}\right]}\)
\(=\dfrac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)^2-n^2\left(n+1\right)}\)
\(=\dfrac{\sqrt{n}}{n}-\dfrac{\sqrt{n+1}}{n+1}\)
\(=\dfrac{1}{\sqrt{n}}+\dfrac{1}{\sqrt{n+1}}\)
Áp dụng vào tổng S ta có:
\(S=\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+...+\dfrac{1}{121\sqrt{120}+120\sqrt{121}}\)
\(S=\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{120}}+\dfrac{1}{\sqrt{121}}\)
\(S=1-\dfrac{1}{\sqrt{121}}=1-\dfrac{1}{11}=\dfrac{10}{11}\)
Ta có: \(S=\dfrac{1}{2+\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+\dfrac{1}{4\sqrt{3}+3\sqrt{4}}+...+\dfrac{1}{100\sqrt{99}+99\sqrt{100}}\)
\(=1-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{99}}-\dfrac{1}{10}\)
\(=1-\dfrac{1}{10}=\dfrac{9}{10}\)
\(A=2.\left|\left(-3\right)\right|^3+2.\left(-2\right)^2-4\left|\left(-2\right)^3\right|\)
\(=54+8-32=30\)
\(B=\left|\sqrt{2}-2\right|+\left|\sqrt{2}-3\right|=2-\sqrt{2}+3-\sqrt{2}\)
\(=5-2\sqrt{2}\)
\(C=\left|3-\sqrt{3}\right|-\left|1+\sqrt{3}\right|=3-\sqrt{3}-1-\sqrt{3}\)
\(=2-2\sqrt{3}\)
\(D=\left|5+\sqrt{6}\right|-\left|\sqrt{6}-5\right|=5+\sqrt{6}-5+\sqrt{6}\)
\(=2\sqrt{6}\)
\(E=\sqrt{15^2}-\sqrt{5^2}=15-5=10\)
`A=2sqrt{(-3)^6}+2sqrt{(-2)^4}-4sqrt{(-2)^6}=2|(-3)^3|+2|(-2)^2|-4|(-2)^3|=54+8-32=30` $\\$ `B=sqrt{(sqrt2-2)^2}+sqrt{(sqrt2-3)^2}=2-sqrt2+3-sqrt2=5-2sqrt2` $\\$ `C=sqrt{(3-sqrt3)^2}-sqrt{(1+sqrt3)^2}=3-sqrt3-sqrt3-1=2-2sqrt3` $\\$ `D=sqrt{(5+sqrt6)^2}-sqrt{(sqrt6-sqrt5)^2}=5+sqrt6-5+sqrt6=2sqrt6` $\\$ `E=sqrt{17^2-8^2}-sqrt{3^2+4^2}=sqrt{289-64}-sqrt{9+16}=sqrt(225)-sqrt{25}=15-5=10`